精英家教网 > 高中数学 > 题目详情
14.函数y=tan(2x+$\frac{π}{4}$)的图象与x轴交点的坐标是($\frac{kπ}{2}$-$\frac{π}{8}$,0),k∈z.

分析 令y=tan(2x+$\frac{π}{4}$)=0,求得x的值,可得函数y的图象与x轴交点的坐标.

解答 解:对于y=tan(2x+$\frac{π}{4}$),令y=tan(2x+$\frac{π}{4}$)=0,可得2x+$\frac{π}{4}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{8}$,
可得函数y的图象与x轴交点的坐标是($\frac{kπ}{2}$-$\frac{π}{8}$,0),k∈z,
故答案为:($\frac{kπ}{2}$-$\frac{π}{8}$,0),k∈z.

点评 本题主要考查正切函数的图象特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.解关于x的不等式:①$\frac{x-1}{2x-1}≥2$;   ②(2mx-1)(x-2)<0(m为实常数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\frac{lnx}{x}$,有下列四个命题:
①?x1,x2∈R+,$f(\frac{{{x_1}+{x_2}}}{2})>\frac{{f({x_1})+f({x_2})}}{2}$;
②?x1,x2∈R+,$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$;
③?x∈R+,?d∈R+,f′(x)<$\frac{{f({x+d})-f(x)}}{d}$;
④?x∈R+,?d∈R+,f′(x)>$\frac{{f({x+d})-f(x)}}{d}$.
其中的真命题是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某产品的广告费用x与销售额y相对应的一组数据(x,y)为:(4,49),(2,26),(3,39),(5,54)根据上述数据可得回归方程y=$\overline{b}$x+$\overline{a}$中的$\overline{b}$=9.4,据此模型预报广告费用为6万元时销售额为(  )
A.63.6万元B.65.5万元C.67.7万元D.72.0万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$α∈(0,\frac{π}{2})$,方程x2sinα+y2cosα=1表示焦点在y轴上的椭圆,则α的取值范围是(  )
A.$(0,\frac{π}{4})$B.$(0,\frac{π}{6})$C.$(\frac{π}{6},\frac{π}{2})$D.$(\frac{π}{4},\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.用边长为48cm的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒,求小正方形边长为多少时所做的铁盒容积最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x3+3ax2+3bx+8c.
(1)若函数f(x)在x=1及x=2时取到极值,求实数a和b的值;
(2)若函数f(x)在x=1时取到极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过抛物线y2=2px(p为大于0的常数)的焦点F,作与坐标轴不垂直的直线l交抛物线于M,N两点,线段MN的垂直平分线交MN于P点,交x轴于Q点,求PQ中点R的轨迹L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是2.

查看答案和解析>>

同步练习册答案