【题目】已知函数
当时,讨论的导函数在区间上零点的个数;
当时,函数的图象恒在图象上方,求正整数的最大值.
【答案】(1)当时,在存在唯一零点;当时,在没有零点(2)
【解析】
(1)首先求,令,然后求,讨论当时,,判断函数的单调性和端点值,判断函数是否有零点;当时,同样是判断函数的单调性,然后结合零点存在性定理,可判断函数是否存在零点;(2)由,参变分离求解出在上恒成立,转化为求函数的最小值,设,,利用导数判断函数的单调性,求得函数的最小值.
解:(1).
令,,则,
①当时,当,,单调递减,又,所以对时,,此时在不存在零点.
②当时,当,,单调递减.
又因为,取,
则,即.
根据零点存在定理,此时在存在唯一零点.
综上,当时,在存在唯一零点;当时,在没有零点.
(2)由已知得在上恒成立.
设,,则
因为时,所以,
设,,所以在上单调递增,
又,,由零点存在定理,使得,即,,
且当时,,,单调递减;当时,,,单调递增.
所以,
又在上单调递减,而,所以,
因此,正整数的最大值为.
科目:高中数学 来源: 题型:
【题目】算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:
表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:
如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列结论:
①“且为真”是“或为真”的充分不必要条件:②“且为假”是“或为真”的充分不必要条件;③“或为真”是“非为假”的必要不充分条件;④“非为真”是“且为假”的必要不充分条件.
其中,正确的结论是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ) =0,M为l3与C的交点,求M的极径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为且;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )
A. 乙有四场比赛获得第三名
B. 每场比赛第一名得分为
C. 甲可能有一场比赛获得第二名
D. 丙可能有一场比赛获得第一名
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的
A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com