精英家教网 > 高中数学 > 题目详情
1.已知命题P:“?x>0,ex>x+1”,则¬P为(  )
A.?x≤0,ex≤x+1B.?x≤0,ex>x+1C.?x>0,ex≤x+1D.?x>0,ex≤x+1

分析 由已知中的原命题,结合全称命题否定的定义,可得答案.

解答 解:∵命题P:“?x>0,ex>x+1”,
∴¬P为:“?x>0,ex≤x+1”,
故选:C

点评 本题考查的知识点是全称命题的否定,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.两个点M(2,-4),N(-2,1)与圆C:x2+y2-2x+4y-4=0的位置关系是(  )
A.点M在圆C外,点N在圆C外B.点M在圆C内,点N在圆C外
C.点M在圆C外,点N在圆C内D.点M在圆C内,点N在圆C内

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M,N两点,△MNF2的面积为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数λ,使得$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法错误的是(  )
A.经过一条直线和这条直线外一点,有且只有一个平面
B.经过两条相交直线,有且只有一个平面
C.平面α与平面β相交,它们只有有限个公共点
D.如果两个平面有三个不共线的公共点,那么这两个平面重合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若关于x的不等式|x+1|-|x-2|>a2+2a有实数解,则实数a的取值范围为(  )
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设p:方程x2+mx+1=0有两个不等的实根,q:不等式4x2+4(m-2)x+1>0在R上恒成立,若¬p为真,p∨q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知g(x)=x2-2ax+1在区间[1,3]上的值域[0,4].
(1)求a的值;
(2)若不等式g(2x)-k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;
(3)若函数$y=\frac{{g(|{2^x}-1|)}}{{|{2^x}-1|}}+k•\frac{2}{{|{2^x}-1|}}-3k$有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设椭圆C1的中心和抛物线C2的顶点均为原点O,C1、C2的焦点均在x轴上,在C1、C2上各取两个点,将其坐标记录于表格中:
(1)求C1、C2的标准方程;
(2)过C2的焦点F作斜率为k的直线l,与C2交于A、B两点,若l与C1交于C、D两点,若$\frac{|AB|}{|CD|}=\frac{5}{3}$,求直线l的方程
x3-24$\sqrt{3}$
y$-2\sqrt{3}$0-4$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$f(x)=\frac{{\sqrt{{{log}_{\frac{1}{2}}}({4x-3})}}}{x-1}$的定义域为($\frac{3}{4}$,1).

查看答案和解析>>

同步练习册答案