精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面,底面为直角梯形,分别为的中点.

1)求证:平面

2)若截面与底面所成锐二面角为,求的长度.

【答案】1)证明见解析;(2.

【解析】

1)取的中点,连接,通过中位线证得,且,又证得,从而可证明四边形是平行四边形,则,利用线面平行的判定定理可证得平面

2)分别以所在直线为轴、轴、轴建立空间直角坐标系,设,利用空间向量法表示出截面与底面所成锐二面角的余弦值,建立方程,从而求出的长.

1)证明:取的中点,连接

的中点,

,且.

∵底面为直角梯形,

,且.

∴四边形是平行四边形,.

平面平面

平面.

2)解:如图,分别以所在直线为轴、轴、

建立空间直角坐标系,设

取平面的一个法向量为.

设平面的法向量为

则有

不妨取,则,即

解得,即的长为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线处切线的斜率为,判断函数的单调性;

2)若函数有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,则下列说法正确的是( )

A.,则的图象上存在唯一一对关于原点对称的点

B.存在实数使得的图象上存在两对关于原点对称的点

C.不存在实数使得的图象上存在两对关于轴对称的点

D.的图象上存在关于轴对称的点,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,雨水、惊蛰、春分、清明日影之和为三丈二尺,前七个节气日影之和为七丈三尺五寸,问立夏日影长为(

A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在四边形中,上的点,的中点.将沿折起到的位置,使得,如图2

1)求证:平面平面

2)点在线段上,当直线与平面所成角的正弦值为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,P为线段上的动点,下列说法正确的是(

A.对任意点P平面

B.三棱锥的体积为

C.线段DP长度的最小值为

D.存在点P,使得DP与平面所成角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的20191月至201911月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是(

A.月跑步里程最小值出现在2

B.月跑步里程逐月增加

C.月跑步里程的中位数为5月份对应的里程数

D.1月至5月的月跑步里程相对于6月至11月波动性更小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱台中,底面是菱形,底面,且60°是棱的中点.

1)求证:

2)求直线与平面所成线面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面底面是等边三角形,底面是菱形,且为棱的中点,为菱形的中心,下列结论正确的有(

A.直线与平面平行B.直线与直线垂直

C.线段与线段长度相等D.所成角的余弦值为

查看答案和解析>>

同步练习册答案