精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx-ax-3(a∈R).
(I)当a=1时,求函数f(x)的单调区间;
(II)若函数y=f(x)的图象在点(2,f(x))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[
m
2
+f(x)]在区间(t,3)上总存在极值?
(III)当a=2时,设函数h(x)=(p-2)x+
p+2
x
-3,若对任意的x∈[1,2],f(x)≥h(x)恒成立,求实数P的取值范围.
分析:(I)当a=1时,f(x)=lnx-x-3,故可先求它的导函数,令导数大于0解出其单调增区间,进而得到减区间.
(II)函数y=f(x)的图象在点(2,f(x))处的切线的倾斜角为45°,可求得此切线的斜率为1,即切点处的导数为1,由此求得参数a的值,再求出g(x)=x3+x2[
m
2
+f(x)]的解析式,利用导数研究函数在区间(t,3)上总存在极值即可.
(III)a=2时,设函数h(x)=(p-2)x+
p+2
x
-3,若对任意的x∈[1,2],f(x)≥h(x)恒成立,即任意的x∈[1,2],f(x)-h(x)≥0恒成立,故求出函数f(x)-h(x)最小值,令其非负即可得到关于参数p的不等式,解之即可求得参数的范围.
解答:解:f'(x)=
a
x
-a
(x>0)
(I)a=1时,f'(x)=
1
x
-1
(x>0),令f'(x)>0解得0<x<1,所以f(x)在区间(0,1)递增,
令f'(x)<0解得x>1,所以f(x)在区间(1,+∞)递减,
(II)函数y=f(x)的图象在点(2,f(x))处的切线的倾斜角为45°,
f'(2)=1,即
a
2
-a
=1,故a=-2,由此得f'(x)=
-2
x
+2

∴g(x)=x3+x2[
m
2
+f(x)]=x3+x2
m
2
+
-2
x
+2
)=x3+(
m
2
+2)x2-2x,∴g'(x)=3x2+(4+2m)x-2
∵对于任意的t∈[1,2],函数g(x)=x3+x2[
m
2
+f(x)]在区间(t,3)上总存在极值
∴g'(x)=3x2+(4+2m)x-2在区间(t,3)上总有根,
∴g'(2)<0,g'(3)>0,
解得-
37
3
<m<
-9
(III)a=2时,f(x)=2lnx-2x-3
令F(x)=f(x)-h(x)=2lnx-px-
p+2
x

F'(x)=
2
x
-p+
p+2
x2
=
2x-px2+p+2
x2
=
-p(x-
p+2
p
) (x+1)
x2

①p+2=0时,F'(x)=
2x+2
x2
> 0
,∴F(x)在[1,2]递增,所以F(1)=-2<0不成立,舍
1+
2
p
<-1,即-1<p<0时,同①不成立,舍;
③-1<1+
2
p
≤1
,即p<-1时,F(x)在[1,2]递增,∴F(1)=-2p-2≥0,解得p≤-1,所以p<-1
④p=-1时,F(x)在[1,2]递增,成立
⑤p>0时,无不成立
综上,p≤-1
点评:本题考点是利用导数研究函数的单调性,考查了用导数求函数的单调区间,用导数研究函数的极值,利用导数求函数的最值,本题涉及到了用导数研究函数的三大问题,知识性综合性较强,在解题过程中要注意问题的转化及分类讨论的技巧的使用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案