精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在三棱柱中,为等边三角形,平面是线段上靠近的三等分点.

1)求证:

2)求直线与平面所成角的正弦值.

【答案】1)证明见解析(2

【解析】

1)由,故,所以四边形为菱形,再通过,证得,所以四边形为正方形,得到.

2)根据(1)的论证,建立空间直角坐标,设平面的法向量为,由求得,再由,利用线面角的向量法公式求解.

1)因为,故

所以四边形为菱形,

平面,故.

因为,故

,即四边形为正方形,故.

2)依题意,.在正方形中,

故以为原点,所在直线分别为轴,

建立如图所示的空间直角坐标系

如图所示:

不纺设

又因为,所以.

所以.

设平面的法向量为

,则.于是.

又因为

设直线与平面所成角为

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数在点处的切线方程;

2是函数的极值点,求函数的单调区间;

3)在(2)的条件下,,若,使不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为准确把握市场规律,某公司对其所属商品售价进行市场调查和模型分析,发现该商品一年内每件的售价按月近似呈的模型波动(为月份),已知3月份每件售价达到最高90元,直到7月份每件售价变为最低50.则根据模型可知在10月份每件售价约为_____.(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若是函数的两个不同的零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300的为“长纤维”,其余为“短纤维”)

纤维长度

甲地(根数)

3

4

4

5

4

乙地(根数)

1

1

2

10

6

(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.

甲地

乙地

总计

长纤维

短纤维

总计

附:(1)

(2)临界值表;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在区间,使得,则称函数可等域函数,区间为函数的一个可等域区间.给出下列4个函数:

其中存在唯一可等域区间可等域函数为( )

(A)①②③ (B)②③ (C)①③ (D)②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线与抛物线交于两点.

(Ⅰ)若,求以为直径的圆被轴所截得的弦长;

(Ⅱ)分别过点作抛物线的切线,两条切线交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为

(Ⅰ)求曲线的参数方程;

(Ⅱ)过原点且关于轴对称的两条直线分别交曲线,且点在第一象限,当四边形的周长最大时,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次 数为

1)求的分布列及其期望;

2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;

ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.

查看答案和解析>>

同步练习册答案