【题目】已知函数f(x)=cos2 + sinωx﹣ (ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是( )
A.(0, ]
B.(0, ]∪[ , )
C.(0, ]
D.(0, ]∪[ , ]
科目:高中数学 来源: 题型:
【题目】若y=(m﹣1)x2+2mx+3是偶函数,则f(﹣1),f(﹣ ),f( )的大小关系为( )
A.f( )>f( )>f(﹣1)
B.f( )<f(﹣ )<f(﹣1)??
C.f(﹣ )<f( )<f(﹣1)
D.f(﹣1)<f( )<f(﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2 , 且对x∈R,恒有f(x﹣2)<f(x),则实数a的取值范围为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到y= cos2x+sinxcosx的图象,只需把y=sin2x的图象上所有点( )
A.向左平移 个单位,再向上移动 个单位
B.向左平移 个单位,再向上移动 个单位
C.向右平移 个单位,再向下移动 个单位
D.向右平移 个单位,再向下移动 个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数y=f(x)的导函数为f′(x),满足f′(x)<f(x),且f(0)=1,则不等式f(x)<ex的解集为( )
A.(﹣∞,e4)
B.(e4 , +∞)
C.(﹣∞,0)
D.(0,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2lnx.
(1)求证:f(x)在(1,+∞)上单调递增.
(2)若f(x)≥2tx﹣ 在x∈(0,1]内恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x)= ,有下列5个结论: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函数y=f(x)在区间[4,5]上单调递增;
③f(x)=2kf(x+2k)(k∈N+),对一切x∈[0,+∞)恒成立;
④函数y=f(x)﹣ln(x﹣1)有3个零点;
⑤若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1 , x2 , 则x1+x2=3.
则其中所有正确结论的序号是 . (请写出全部正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(πx+ )和函数g(x)=cos(πx+ )在区间[﹣ , ]上的图象交于A,B,C三点,则△ABC的面积是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com