精英家教网 > 高中数学 > 题目详情
16、若f(n)表示n2-2n+2(n∈N+)的各位上的数字之和,例如142-2×14+2=170,1+7+0=8,所以f(14)=8.设f1(n)=f(n),f2(n)=f[(f1(n)],…,fk+1(n)=f[(fk(n)](k∈N+),则f2010(17)=
8
分析:先求出f(17)=14,f(14)=8,f(8)=5,f(5)=8.f2010(17)=f(f(f(…f(17)…)))(2010个f)=f(f(f(…f(14)…)))(2009个f)=f(f(f(…f(8)…)))(2008个f)=f(f(f(…f(5)…)))(2007个f)=f(f(f(…f(8)…)))(2006个f)=f(f(f(…f(5)…)))(2005个f)=f(f(f(…f(8)…)))(2004个f),所以f2010(17)=8.
解答:解:∵172-2×17+2=257,2+5+7=14,∴f(17)=14.
∵142-2×14+2=170,1+7+0=8,∴f(14)=8.
∵82-2×8+2=50,5+0=5,∴f(8)=5,
∵52-2×5+2=17,1+7=8,∴f(5)=8.
∴f2010(17)=f(f(f(…f(17)…)))(2010个f)
=f(f(f(…f(14)…)))(2009个f)
=f(f(f(…f(8)…)))(2008个f)
=f(f(f(…f(5)…)))(2007个f)
=f(f(f(…f(8)…)))(2006个f)
=f(f(f(…f(5)…)))(2005个f)
=f(f(f(…f(8)…)))(2004个f)
所以f2010(17)=8.
故答案为:8.
点评:本题考查函数的递推式,解题时要注意寻找规律,总结方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、若f(n)表示n2+1(n∈N*)的各位数字之和,如:62=36,36+1=37,3+7=10,则f(6)=10,记f1(n)=f(n),f2(n)=f(f1(n)),…fk+1(n)=f(fk(n))(k∈N*),则f2009(8)=
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(n)表示n2+1(n∈N×)的各位数字之和,如142+1=197,1+9+7=17,f(14)=17,记f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n),k∈N×,则f2010(8)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)给出下列命题:
①设向量
e1
e2
满足|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夹角为钝角,则实数t的取值范围是(-7,-
1
2
);
②已知一组正数x1,x2,x3,x4的方差为s2=
1
4
(x12+x22+x32+x42)-4,则x1+1,x2+1,x3+1,x4+1的平均数为1
③设a,b,c分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=o与x2+2cx-b2=0有公共根的充要条件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的数字之和,如112+1=122,1+2+2=5,所以f(n)=5,记f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,则f20(5)=11.
上面命题中,假命题的序号是
 (写出所有假命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若f(n)表示n2+1(n∈N*)的各位数字之和,如:62=36,36+1=37,3+7=10,则f(6)=10,记f1(n)=f(n),f2(n)=f(f1(n)),…fk+1(n)=f(fk(n))(k∈N*),则f2009(8)=______.

查看答案和解析>>

同步练习册答案