【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为: , ,,,,.把年龄落在区间和内的人分别称为“青少年”和“中老年”.
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数
(2)根据已知条件完成下面的2×2列联表,并判断能否有99%的把握认为关注“带一路”是否和年龄段有关?
关注 | 不关注 | 合计 | |
青少年 | 15 | ||
中老年 | |||
合计 | 50 | 50 | 100 |
附:参考公式,其中
临界值表:
/td> | 0.05 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
【答案】(1) 36.43 , 40 (2) 有的把握认为关注“一带一路” 和年龄段有关
【解析】试题分析:(1)根据频率分布直方图给定的数据,利用公式,即可计算样本的中位数;
(2)依题意知,抽取的“青少年”的人数,“中老年人”的人数,列出列联表,求得的值,作出判断即可.
试题解析:
(1)根据频率分布直方图可知样本的众数为40,因为
设样本的中位数为,则,所以,即样本的中位数为36.43.
(2)依题意知,抽取的“青少年”共有人,“中老年人”共有人,完成列联表如下:
关注 | 不关注 | 合计 | |
青少年 | 15 | 30 | 45 |
中老年 | 35 | 20 | 55 |
合计 | 50 | 50 | 100 |
结合数据得,
因为, ,所以有的把握认为关注“一带一路” 和年龄段有关.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程是(为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的直角坐标方程;
(2)设点、分别在、上运动,若的最小值为1,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为|OB|.
(1)求椭圆C的方程;
(2)如图,若椭圆,椭圆,则称椭圆C2是椭圆C1的λ倍相似椭圆.已知C2是椭圆C的3倍相似椭圆,若椭圆C的任意一条切线l交椭圆C2于两点M、N,试求弦长|MN|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体中, , ,点, , 分别为, , 的中点,过点的平面与平面平行,且与长方体的面相交,交线围成一个几何图形.
(1)在图中画出这个几何图形(说明画法,不需要说明理由);
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】金砖国家领导人第九次会晤于2017年9月3日至5日在中国福建厦门市举行,为了在金砖峰会期间为来到厦门的外国嘉宾提供服务,培训部对两千余名志愿者进行了集中培训,为了检验培训效果,现培训部从两千余名志愿者中随机抽取100名,按年龄(单位:岁)分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者前去机场参加接待外宾礼仪测试,则应从第3,4,5组中各抽取多少名志愿者?
(2)在(1)的条件下,若在第3,4组的志愿者中随机抽取2名志愿者介绍接待外宾经验感受,求第4组至少有1名志愿者被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把2支相同的晨光签字笔,3支相同英雄钢笔全部分给4名优秀学生,每名学生至少1支,则不同的分法有( )
A. 24种 B. 28种 C. 32种 D. 36种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象与轴正半轴交点的横坐标依次构成一个公差为的等差数列,把函数的图象沿轴向右平移个单位,得到函数的图象,则下列叙述不正确的是( )
A. 的图象关于点对称 B. 的图象关于直线对称
C. 在上是增函数 D. 是奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直角坐标系中动点,参数,在以原点为极点、轴正半轴为极轴所建立的极坐标系中,动点在曲线: 上.
(1)求点的轨迹的普通方程和曲线的直角坐标方程;
(2)若动点的轨迹和曲线有两个公共点,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com