精英家教网 > 高中数学 > 题目详情

已知抛物线,直线两点,是线段的中点,过轴的垂线交于点.(1)证明:抛物线在点处的切线与平行;(2)是否存在实数使NANB,若存在,求的值;若不存在,说明理由.

(Ⅰ)  略  (Ⅱ)   


解析:

法一:(Ⅰ)如图,设,把代入,由韦达定理得

点的坐标为

设抛物线在点处的切线的方程为

代入上式得直线与抛物线相切,

.即

(Ⅱ)假设存在实数,使,则,又的中点,

.由(Ⅰ)知

轴,

,解得.即存在,使

解法二:(Ⅰ)如图,设,把代入

.由韦达定理得

点的坐标为

抛物线在点处的切线的斜率为

(Ⅱ)假设存在实数,使

由(Ⅰ)知,则

,解得.即存在,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)已知抛物线,直线两点,是线段的中点,过轴的垂线交于点

(Ⅰ)证明:抛物线在点处的切线与平行;

(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

已知抛物线,直线两点,是线段的中点,过轴的垂线交于点

(Ⅰ)证明:抛物线在点处的切线与平行;

(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试陕西文科数学 题型:解答题

(本小题满分12分)已知抛物线,直线两点,是线段的中点,过轴的垂线交于点

(Ⅰ)证明:抛物线在点处的切线与平行;

(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试理科数学(陕西卷) 题型:解答题

(本小题满分12分)

已知抛物线,直线两点,是线段的中点,过轴的垂线交于点

(Ⅰ)证明:抛物线在点处的切线与平行;

(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案