已知函数f(x)=.
(1)求函数f(x)的单调区间和极值;
(2)若函数y=g(x)对任意x满足g(x)=f(4-x),求证:当x>2,f(x)>g(x);
(3)若x1≠x2,且f(x1)=f(x2),求证:x1+x2>4.
[解] (1)∵f(x)=,∴f′(x)=.
令f′(x)=0,解得x=2.
x | (-∞,2) | 2 | (2,+∞) |
f′(x) | + | 0 | - |
f(x) | 极大值 |
∴f(x)在(-∞,2)内是增函数,在(2,+∞)内是减函数.
∴当x=2时,f(x)取得极大值f(2)=.
(2)g(x)=f(4-x)=,令F(x)=f(x)-g(x)=-,
∴F′(x)=-=.
当x>2时,2-x<0,2x>4,从而e4-e2x<0,
∴F′(x)>0,F(x)在(2,+∞)是增函数.
∴F(x)>F(2)=-=0,故当x>2时,f(x)>g(x)成立.
(3)∵f(x)在(-∞,2)内是增函数,在(2,+∞)内是减函数.
∴当x1≠x2,且f(x1)=f(x2),x1、x2不可能在同一单调区间内.
不妨设x1<2<x2,由(2)可知f(x2)>g(x2),又g(x2)=f(4-x2),∴f(x2)>f(4-x2).
∵f(x1)=f(x2),∴f(x1)>f(4-x2).
∵x2>2,4-x2<2,x1<2,且f(x)在区间(-∞,2)内为增函数,
∴x1>4-x2,即x1+x2>4.
科目:高中数学 来源:2011届南京市金陵中学高三第四次模拟考试数学试题 题型:解答题
(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:选择题
已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:填空题
已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:
(1)方程f [f (x)]=x一定无实根;
(2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x0,使f [f (x0)]>x0;
(4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;
正确的序号有 .
查看答案和解析>>
科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:选择题
已知函数f(x)=|lg(x-1)|-()x有两个零点x1,x2,则有
A.x1x2<1 B.x1x2<x1+x2
C.x1x2=x1+x2 D.x1x2>x1+x2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com