精英家教网 > 高中数学 > 题目详情
若f(n)为n2+1的各位数字之和(n∈N*).如:因为142+1=197,1+9+7=17,所以f(14)=17.记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2006(8)=
5
5
分析:根据题中的对应法则,算出f1(8)、f2(8)、f3(8)、f4(8)的值,从而发现规律fk+3(8)=fk(8)对任意k∈N*成立,由此即可得到f2006(8)=f2(8)=5.
解答:解:∵82+1=65,∴f1(8)=f(8)=6+5=11,
同理,由112+1=122得f2(8)=1+2+2=5;由52+1=26,得f3(8)=2+6=8,
可得f4(8)=6+5=11=f1(8),f5(8)=f2(8),…,
∴fk+3(8)=fk(8)对任意k∈N*成立
又∵2006=3×668+2,
∴f2006(8)=f2003(8)=f2000(8)=…=f2(8)=5
故答案为:5
点评:本题给出函数fk(x)的对应法则,求f2006(8)的值.着重考查了函数的定义、数列的递推公式和进行简单的合情推理等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2008(8)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2008(8)=
11

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17则f(14)=17,记f1(n)=f(n),f2(n)=f(f1(n)),fk+1(n)=f(fk(n))k∈N*则f2012(8)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2(n)=f〔f1(n)〕,…,fk+1(n)=f〔fk(n)〕,k∈N*,则f2012(8)=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(n)为n2+1(n∈N*)的各位数字之和,如 142+1=197,1+9+7=17则f(14)=17,记f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)]k∈N*,则f2010(8)=
8
8

查看答案和解析>>

同步练习册答案