【题目】已知,是椭圆的左右焦点,椭圆与轴正半轴交于点,直线的斜率为,且到直线的距离为.
(1)求椭圆的方程;
(2)为椭圆上任意一点,过,分别作直线,,且与相交于轴上方一点,当时,求,两点间距离的最大值.
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,(为常数)对于任意的恒成立.
(1)若,求的值;
(2)证明:数列是等差数列;
(3)若,关于的不等式有且仅有两个不同的整数解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设动点在圆上,动线段的中点的轨迹为,与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱柱ABC﹣A1B1C1中,平面AA1B1B⊥平面ABC,AB=AA1=A1B=4,BC=2,AC=2,点F为AB的中点,点E为线段A1C1上的动点.
(1)求证:BC⊥平面A1EF;
(2)若∠B1EC1=60°,求四面体A1B1EF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,平面平面,和均是等腰直角三角形,,,、分别为、的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:;
(Ⅲ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,动直线l与椭圆E交于不同的两点,,且△AOB的面积为1,其中O为坐标原点.
(1)证明:为定值;
(2)设线段AB的中点为M,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒属于属的冠状病毒,有包膜,颗粒常为多形性,其中包含着结构为数学模型的,,人体肺部结构中包含,的结构,新型冠状病毒肺炎是由它们复合而成的,表现为.则下列结论正确的是( )
A.若,则为周期函数
B.对于,的最小值为
C.若在区间上是增函数,则
D.若,,满足,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为;乙第一次射击的命中率为,若第一次未射中,则乙进行第二次射击,射击的命中率为,如果又未中,则乙进行第三次射击,射击的命中率为.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为_____,乙射中的概率为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com