精英家教网 > 高中数学 > 题目详情

【题目】已知是椭圆的左右焦点,椭圆与轴正半轴交于点,直线的斜率为,且到直线的距离为

1)求椭圆的方程;

2为椭圆上任意一点,过分别作直线,且相交于轴上方一点,当时,求两点间距离的最大值.

【答案】12

【解析】

1)设出的方程,根据其斜率以及点到直线的距离,即可列出方程,求得结果;

2)根据题意,得到,从而求得点的轨迹方程,将问题转化为求一点到圆上任意一点距离的最大值,则问题得解.

解:(1)由题意,可知

①.

∵直线的方程为,即

∴由题意有②.

③.

由①②③得

∴椭圆的方程为

2)由(1)可知:

则当都不垂直于轴时,

化简,得

垂直于轴时,得,也满足上式.

点的轨迹方程为

∴当与圆心距离最大时,两点间距离取得最大值.

又∵

两点间距离的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为为常数)对于任意的恒成立.

1)若,求的值;

2)证明:数列是等差数列;

3)若,关于的不等式有且仅有两个不同的整数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C上,过Mx轴的垂线,垂足为N,点P满足.

1)求点P的轨迹方程;

2)设点在直线上,且.证明:过点P且垂直于OQ的直线C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设动点在圆上,动线段的中点的轨迹为与直线交点为,且直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABCA1B1C1中,平面AA1B1B⊥平面ABCABAA1A1B4BC2AC2,点FAB的中点,点E为线段A1C1上的动点.

1)求证:BC⊥平面A1EF

2)若∠B1EC160°,求四面体A1B1EF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面均是等腰直角三角形,分别为的中点.

)求证:平面

)求证:

)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,动直线l与椭圆E交于不同的两点,且△AOB的面积为1,其中O为坐标原点.

1)证明:为定值;

2)设线段AB的中点为M,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒属于属的冠状病毒,有包膜,颗粒常为多形性,其中包含着结构为数学模型的,人体肺部结构中包含的结构,新型冠状病毒肺炎是由它们复合而成的,表现为.则下列结论正确的是(

A.,则为周期函数

B.对于的最小值为

C.在区间上是增函数,则

D.,满足,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为;乙第一次射击的命中率为,若第一次未射中,则乙进行第二次射击,射击的命中率为,如果又未中,则乙进行第三次射击,射击的命中率为.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为_____,乙射中的概率为_____

查看答案和解析>>

同步练习册答案