精英家教网 > 高中数学 > 题目详情
16.向量(3,4)在向量(1,2)上的投影为$\frac{11\sqrt{5}}{5}$.

分析 根据所给的两个向量的坐标,利用求一个向量在另一个向量上的投影的公式,即两个向量的数量积除以被投影的向量的模长.

解答 解:∵向量(3,4)在向量(1,2)
∴(3,4)•(1,2)=3×1+4×2=11,
向量(1,2)上的模为$\sqrt{5}$,
∴向量(3,4)在向量(1,2)上的投影为$\frac{11}{\sqrt{5}}$=$\frac{11\sqrt{5}}{5}$,
故答案为:$\frac{11\sqrt{5}}{5}$

点评 本题考查向量的投影,解题的关键是看出两个向量之间是哪一个在哪一个向量上的投影,看清两者之间的关系,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在△ABC中,角A,B,C的对边分别为a,b,c,且${cos^2}\frac{B}{2}=\frac{a+c}{2c}$,则△ABC的形状为(  )
A.直角三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\vec a=(-1,-3,2)$,$\vec b=(1,2,0)$,则$\vec a•\vec b$=(  )
A.-5B.-7C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l1:2x+y+4=0,l2:ax+4y+1=0.
(1)当l1⊥l2时,求l1与l2的交点坐标;
(2)当l1∥l2时,求l1与l2间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆x2+y2+4x-2y-1=0上存在两点关于直线ax-2by+1=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为(  )
A.3+2$\sqrt{2}$B.9C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.甲、乙两人在相同的条件下练习射击,每人打5发子弹,命中的环数如表:
甲:6,8,9,9,8;
乙:10,7,7,7,9.
则两人的射击成绩较稳定的是甲.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在长方体ABCD-A1B1C1D1中,AA1=AD=4,E是棱CD上的一点.
(1)求证:AD1⊥平面A1B1D;
(2)求证:B1E⊥AD1
(3)若E是棱CD的中点,在棱AA1上是否存在点P,使得DP∥平面B1AE?若存在,求出线段AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正方体ABCD-A1B1C1D1中,E是棱C1D1的中点,则异面直线A1B、EC的夹角的余弦值为(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{15}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义域为R的函数$f(x)=\frac{{b-{2^x}}}{{a+{2^x}}}$是奇函数.
(1)求a,b的值;
(2)用定义证明f(x)在(-∞,+∞)上为减函数;
(3)若对于任意t∈R,不等式f(t2-2t)<f(-2t2+k)恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案