精英家教网 > 高中数学 > 题目详情
精英家教网如图,正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB
(I)求证:AD⊥B1D;
(II)求证:A1C∥平面AB1D;
(III)求二面角B-AB1-D的大小.
分析:方法一:
(1)在正三棱柱中,易证明BB1⊥平面ABC及AD⊥BD,根据三垂线定理可知:AD⊥B1D
(2)根据直线与平面平行的判定定理可知,只要在平面AB1D里面找到一条直线与A1C平行即可,因为D为BC中点,所以构造平行线的时候可以考虑一下构造“中位线”,连接A1B,设A1B∩AB1=E,连接DE,所以DE∥A1C.
(3)二面角的度量关键在于找出它的平面角,构造平面角常用的方法就是三垂线法.在面ABC内作DF⊥AB于点F,由平面A1ABB1⊥平面ABC可知:DF⊥平面A1ABB1
方法二:
因为DC、DA及三棱柱为正三棱柱可知,我们可以建立空间直角坐标系D-xyz,这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.
解答:精英家教网解:法一(Ⅰ)证明:∵ABC-A1B1C1是正三棱柱,
∴BB1⊥平面ABC,
∴BD是B1D在平面ABC上的射影
在正△ABC中,∵D是BC的中点,
∴AD⊥BD,
根据三垂线定理得,AD⊥B1D.

(Ⅱ)解:连接A1B,设A1B∩AB1=E,连接DE.
∵AA1=AB∴四边形A1ABB1是正方形,
∴E是A1B的中点,
又D是BC的中点,
∴DE∥A1C.(7分)
∵DE?平面AB1D,A1C?平面AB1D,
∴A1C∥平面AB1D.(9分)
(Ⅲ)解:在面ABC内作DF⊥AB于点F,在面A1ABB1内作FG⊥AB1于点G,连接DG.
∵平面A1ABB1⊥平面ABC,∴DF⊥平面A1ABB1
∴FG是DG在平面A1ABB1上的射影,∵FG⊥AB1,∴DG⊥AB1
∴∠FGD是二面角B-AB1-D的平面角(12分)
设A1A=AB=1,在正△ABC中,DF=
3
4

在△ABE中,FG=
3
4
•BE=
3
2
8

在Rt△DFG中,tanFGD=
DF
FG
=
6
3

所以,二面角B-AB1-D的大小为arctan
6
3
.(14分)

解法二:
建立空间直角坐标系D-xyz,如图,
精英家教网D(0,0,0),A(0,
3
2
,0),B1(-
1
2
,0,1)

证明:∵
AD
=(0,
3
2
,0),
B1D
=(-
1
2
,0,-1)

AD
B1D
=0
AD
B1D

即AD⊥B1D(4分)

(Ⅱ)解:连接A1B,设A1B∩AB1=E,连接DE.
A1(0,
3
2
,1),E(-
1
4
3
4
1
2
),C(
1
2
,0,0)

A1C
=(
1
2
,-
3
2
,-1),
DE
=(-
1
4
3
4
1
2
)

A1C
=-2
DE
,∴A1C∥DE
.(7分)
∵DE?平面AB1D,A1C?平面AB1D,∴A1C∥平面AB1D.(9分)
(Ⅲ)设n1=(p,q,r)是平面AB1D的法向量,则n1
AD
=0,且n1
B1D
=0

-
3
2
q=0,
1
2
p-r=0.取r=1,得n1=(2,0,1)

同理,可求得平面AB1B的法向量是n2=(
3
,-1,0)
.(12分)
设二面角B-AB1-D的大小θ,∵cosθ=
n1n2
|n1||n2|
=
15
5

∴二面角B-AB1-D的大小为arccos
15
5
.(14分)
点评:本小题主要考查空间线面关系、二面角的度量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案