精英家教网 > 高中数学 > 题目详情

【题目】已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

【答案】
(1)解:因为f(x)=x3﹣3x2+3ax﹣3a+3,所以f′(x)=3x2﹣6x+3a,

故f′(1)=3a﹣3,又f(1)=1,所以所求的切线方程为y=(3a﹣3)x﹣3a+4;


(2)解:由于f′(x)=3(x﹣1)2+3(a﹣1),0≤x≤2.

故当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故

|f(x)|max=max{|f(0)|,|f(2)|}=3﹣3a.

当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故

|f(x)|max=max{|f(0)|,|f(2)|}=3a﹣1.

当0<a<1时,由3(x﹣1)2+3(a﹣1)=0,得

所以,当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;

当x∈(x1,x2)时,f′(x)<0,函数f(x)单调递减;

当x∈(x2,2)时,f′(x)>0,函数f(x)单调递增.

所以函数f(x)的极大值 ,极小值

故f(x1)+f(x2)=2>0,

从而f(x1)>|f(x2)|.

所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.

当0<a< 时,f(0)>|f(2)|.

=

时,|f(2)|=f(2),且f(2)≥f(0).

=

所以当 时,f(x1)>|f(2)|.

时,f(x1)≤|f(2)|.

故f(x)max=|f(2)|=3a﹣1.

综上所述|f(x)|max=


【解析】(1)求出原函数的导函数,求出函数取x=1时的导数值及f(1),由直线方程的点斜式写出切线方程;(2)求出原函数的导函数,分a≤0,0<a<1,a≥1三种情况求|f(x)|的最大值.特别当0<a<1时,仍需要利用导数求函数在区间(0,2)上的极值,然后在根据a的范围分析区间端点值与极值绝对值的大小.
【考点精析】关于本题考查的函数的最大(小)值与导数,需要了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,抛物线的方程为

(1)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求的极坐标方程;

(2)直线的参数方程是为参数),交于两点, ,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过点且互相垂直的两条直线分别与圆交于点AB,与圆交于点C,D.

(1) 若AB,求CD的长;

(2)若直线斜率为2,求的面积;

(3) 若CD的中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差为d的等差数列{an}中,已知a1=10,且a1 , 2a2+2,5a3成等比数列.
(1)求d,an
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为的水轮如图所示,水轮圆心距离水面;已知水轮按逆时针做匀速转动,每转一圈,如果当水轮上点从水中浮现时(图中点)开始计算时间.

(1)以水轮所在平面与水面的交线为轴,以过点且与水面垂直的直线为轴,建立如图所示的直角坐标系,将点距离水面的高度表示为时间的函数;

(2)点第一次到达最高点大约要多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,且分别为线段的中点,沿折起,使,得到如下的立体图形.

(1)证明:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a+b=2,b>0,则当a=时, 取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分按2log5A+1)进行奖励.记奖金y(单位:万元),销售利润x(单位:万元)

1)写出该公司激励销售人员的奖励方案的函数模型;

2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为 ;以D为起点,其余顶点为终点的向量分别为 .若m、M分别为( + + )( + + )的最小值、最大值,其中{i,j,k}{1,2,3,4,5},{r,s,t}{1,2,3,4,5},则m、M满足(
A.m=0,M>0
B.m<0,M>0
C.m<0,M=0
D.m<0,M<0

查看答案和解析>>

同步练习册答案