精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,O为AC,BD的交点,则C1O与A1D所成角余弦(  )
A.
1
2
B.0C.
3
6
D.
3
3
设正方体ABCD-A1B1C1D1的棱长为2,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,
则C1(0,2,2),O(1,1,0),A1(2,0,2),D(0,0,0),
C1O
=(1,-1,-2),
A1D
=(-2,0,-2),
设C1O与A1D所成角为θ,
则cosθ=|cos<
C1O
A1D
|=|
-2+0+4
6
8
|=
3
6

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

正三棱锥的一个侧面的面积与底面积之比为2∶3,则这个三棱锥的侧面和底面所成二面角的度数为_________. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理)如图,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

记动点P是棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上一点,记
D1P
D1B
.当∠APC为钝角时,则λ的取值范围为(  )
A.(0,1)B.(
1
3
,1)
C.(0,
1
3
)
D.(1,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,设AA1=2.M,N分别是C1D1,CC1的中点.
(1)求异面直线A1N与MC所成角的余弦值;
(2)设P为线段AD上任意一点,求证:MC⊥PN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1,∠BAC=90°,D为棱BB1的中点
(Ⅰ)求异面直线C1D与A1C所成的角;
(Ⅱ)求证:平面A1DC⊥平面ADC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图:四面体P-ABC为正四面体,M为PC的中点,则BM与AC所成的角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正方体ABCD-A1B1C1D1中,AA1=2,E为棱CC1上的点,则B1D1与AE所成的角(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四面体ABCD中,点E、F分别为BC、AD的中点,则AE与CF所成角的余弦值为(  )
A.-
2
3
B.
2
3
C.-
1
3
D.
1
3

查看答案和解析>>

同步练习册答案