【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率的关系,对某校高三某班学生进行了关注统计,得到如表数据:
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求关于的线性回归方程,并预测答题正确率是的强化训练次数(保留整数);
(2)若用()表示统计数据的“强化均值”(保留整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
, ,样本数据, ,…, 的标准差为
【答案】(1)答案见解析;(2)这个班的强化训练有效.
【解析】试题分析:(1)先由表格中的数据算出公式所需数据,利用公式求出, ,可得回归方程,将代入所求回归方程即可预测答题正确率是的强化训练次数;(2)计算出这次统计数据的“强化均值”的平均值,由平均数可得“强化均值”的方差,然后看标准差是否在区间内即可得结果.
试题解析:(1)由所给数据计算得: , , , ,
, ,
所求回归直线方程是,
由,得预测答题正确率是100%的强化训练次数为7次.
(2)经计算知,这四组数据的“强化均值”分别为5,6,8,9,平均数是7,
“强化均值”的标准差是,
所以这个班的强化训练有效.
【方法点晴】本题主要考查线性回归方程及其应用,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为; 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥, 平面,底面中, , ,且, 为的中点.
(1)求证:平面平面;
(2)问在棱上是否存在点,使平面,若存在,请求出二面角的余弦值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信是当前主要的社交应用之一,有着几亿用户,覆盖范围广,及时快捷,作为移动支付的重要形式,微信支付成为人们支付的重要方式和手段。某公司为了解人们对“微信支付”认可度,对年龄段的人群随机抽取人进行了一次“你是否喜欢微信支付”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:
组号 | 分组 | 喜欢微信支付的人数 | 喜欢微信支付的人数 占本组的频率 |
第一组 | |||
第二组 | |||
第三组 | |||
第四组 | |||
第五组 | |||
第六组 |
(1)补全频率分布直方图,并求, , 的值;
(2)在第四、五、六组“喜欢微信支付”的人中,用分层抽样的方法抽取人参加“微信支付日鼓励金”活动,求第四、五、六组应分别抽取的人数;
(3)在(2)中抽取的人中随机选派人做采访嘉宾,求所选派的人没有第四组人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:
乘坐站数 | |||
票价(元) |
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站.甲、乙乘坐不超过站的概率分别为, ;甲、乙乘坐超过站的概率分别为, .
(1)求甲、乙两人付费相同的概率;
(2)设甲、乙两人所付费用之和为随机变量,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 (万人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出关于的线性回归方程.
(2)已知购买原材料的费用 (元)与数量 (袋)的关系为,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).
参考公式: , .
参考数据: , , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.
(Ⅰ)求此人到达当日空气重度污染的概率;
(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某村计划建造一个室内面积为800m2的矩形蔬菜温室,在室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018届北京市海淀区】如图,三棱柱侧面底面,
, 分别为棱的中点.
(Ⅰ)求证: ;
(Ⅱ)求三棱柱的体积;
(Ⅲ)在直线上是否存在一点,使得平面?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com