精英家教网 > 高中数学 > 题目详情

【题目】我们打印用的A4纸的长与宽的比约为,之所以是这个比值,是因为把纸张对折,得到的新纸的长与宽之比仍约为,纸张的形状不变.已知圆柱的母线长小于底面圆的直径长(如图所示),它的轴截面ABCD为一张A4纸,若点E为上底面圆上弧AB的中点,则异面直线DEAB所成的角约为(

A.B.C.D.

【答案】C

【解析】

CD的中点为O,过EEF⊥底面⊙O,连接OEOF,证明ODOE,计算tanEDO即可得出答案.

AB//CD,∴∠EDC(或补角)为异面直线DEAB所成的角,

CD的中点为O,过EEF⊥底面⊙O,连接OEOF

E的中点,∴F的中点,∴CDOF

EF⊥平面⊙O,∴EFCD

CD⊥平面OEF,∴ODOE

AD1,则CD,故OFEF1

于是OE

tanEDO

∴∠EDO

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某疫苗进行安全性临床试验.该疫苗安全性的一个重要指标是:注射疫苗后人体血液中的高铁血红蛋白(MetHb)的含量(以下简称为M含量)不超过1%,则为阴性,认为受试者没有出现高铁血红蛋白血症(简称血症);若M含量超过1%,则为阳性,认为受试者出现血症.若一批受试者的M含量平均数不超过0.65%,且出现血症的被测试者的比例不超过5%,则认为该疫苗在M含量指标上是安全的;否则为不安全”.现有男、女志愿者各200名接受了该疫苗注射,按照性别分层,随机抽取50名志愿者进行M含量的检测,其中女性志愿者被检测出阳性的恰好1.经数据整理,制得频率分布直方图如下.(注:在频率分布直方图中,同一组数据用该区间的中点值作代表.

1)请说明该疫苗在M含量指标上的安全性;

2)请利用样本估计总体的思想,完成这400名志愿者的列联表,并判断是否有超过99%的把握认为,注射疫苗后,高铁血红蛋白血症与性别有关?

阳性

阴性

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且,数列是公差为0的等差数列,且满足的等比数列.

1)求数列的通项公式;

2)求

3)设数列的通项公式,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020312日,国务院新闻办公室发布会重点介绍了改革开放40年,特别是党的十八大以来我国脱贫攻坚、精准扶贫取得的显著成绩,这些成绩为全面脱贫初步建成小康社会奠定了坚实的基础.下图是统计局公布的2010年~2019年年底的贫困人口和贫困发生率统计表.则下面结论正确的是(

(年底贫困人口的线性回归方程为(其中年份-2019),贫困发生率的线性回归方程为(其中年份-2009)

A.2010年~2019年十年间脱贫人口逐年减少,贫困发生率逐年下降

B.2012~2019年连续八年每年减贫超过1000万,且2019年贫困发生率最低

C.2010年~2019年十年间超过1.65亿人脱贫,其中2015年贫困发生率低于6

D.根据图中趋势线可以预测,到2020年底我国将实现全面脱贫

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车.并对该电动汽车的电池使用情况进行了测试,其中剩余电量y与行驶时问 (单位:小时)的测试数据如下表:

1)根据电池放电的特点,剩余电量y与行驶时间之间满足经验关系式:,通过散点图可以发现y之间具有相关性.设,利用表格中的前8组数据求相关系数r,并判断是否有99%的把握认为之间具有线性相关关系;(当相关系数r满足时,则认为有99%的把握认为两个变量具有线性相关关系)

2)利用的相关性及表格中前8组数据求出之间的回归方程;(结果保留两位小数)

3)如果剩余电量不足0.8,电池就需要充电.从表格中的10组数据中随机选出8组,设X表示需要充电的数据组数,求X的分布列及数学期望.

附:相关数据:

表格中前8组数据的一些相关量:

相关公式:对于样本,其回归直线的斜率和戗距的最小二乘估计公式分别为:

相关系数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有三个点在椭圆C上,左、右焦点分别为F1F2

1)求椭圆C的方程;

2)过左焦点F1且不平行坐标轴的直线l交椭圆于PQ两点,若PQ的中点为NO为原点,直线ON交直线x=﹣3于点M,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中是自然对数的底数.

1)若上存在两个极值点,求的取值范围;

2)若,函数与函数的图象交于,且线段的中点为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】法国数学家庞加是个喜欢吃面包的人,他每天都会购买一个面包,面包师声称自己出售的每个面包的平均质量是1000,上下浮动不超过50.这句话用数学语言来表达就是:每个面包的质量服从期望为1000,标准差为50的正态分布.

1)假设面包师的说法是真实的,从面包师出售的面包中任取两个,记取出的两个面包中质量大于1000的个数为,求的分布列和数学期望;

2)作为一个善于思考的数学家,庞加莱每天都会将买来的面包称重并记录,25天后,得到数据如下表,经计算25个面包总质量为24468.庞加莱购买的25个面包质量的统计数据(单位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

尽管上述数据都落在上,但庞加菜还是认为面包师撒谎,根据所附信息,从概率角度说明理由

附:

,从X的取值中随机抽取25个数据,记这25个数据的平均值为Y,则由统计学知识可知:随机变量

,则

通常把发生概率在0.05以下的事件称为小概率事件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布封国封城,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:

企业成立年份

2019

2018

2017

2016

2015

企业成立年限

1

2

3

4

5

倒闭企业数量(万家)

5.23

4.70

3.72

3.12

2.42

倒闭企业所占比例

21.8%

19.6%

15.5%

13.0%

10.1%

根据上表,给出两种回归模型:

模型①:建立曲线型回归模型,求得回归方程为

模型②:建立线性回归模型.

1)根据所给的统计量,求模型②中关于的回归方程;

2)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测年成立的企业中倒闭企业所占比例(结果保留整数).

回归模型

模型①

模型②

回归方程

参考公式:.

参考数据:.

查看答案和解析>>

同步练习册答案