在空间四边形ABCP中,PA⊥PC,PB⊥BC,AC⊥BC.PA、PB与平面ABC所成角分别为30°和45°.
(1)直线PC与AB能否垂直?证明你的结论;
(2)若点P到平面ABC的距离为h,求点P到直线AB的距离.
解:(1)AB与PC不能垂直,证明如下:假设PC⊥AB,作PH⊥平面ABC于H,则HC是PC在平面ABC的射影,∴HC⊥AB,∵PA、PB在平面ABC的射影分别为HB、HA,PB⊥BC,PA⊥PC. ∴BH⊥BC,AH⊥AC ∵AC⊥BC,∴平行四边形ACBH为矩形. ∵HC⊥AB,∴ACBH为正方形. ∴HB=HA ∵PH⊥平面ACBH.∴ΔPHB≌ΔPHA. ∴∠PBH=∠PAH,且PB,PA与平面ABC所成角分别为∠PBH,∠PAH.由已知∠PBH=45°,∠PAH=30°,与∠PBH=∠PAH矛盾. ∴PC不垂直于AB. (2)由已知有PH=h,∴∠PBH=45° ∴BH=PH=h.∵∠PAH=30°,∴HA=h. ∴矩形ACBH中,AB===2h. 作HE⊥AB于E,∴HE===h. ∵PH⊥平面ACBH,HE⊥AB, 由三垂线定理有PE⊥AB,∴PE是点P到AB的距离. 在RtΔPHE中,PE===h. 即点P到AB距离为h. 评析:此题属开放型命题,处理此类问题的方法是先假设结论成立,然后“执果索因”,作推理分析,导出矛盾的就否定结论(反证法),导不出矛盾的,就说明与条件相容,可采用演绎法进行推理,此题(1)属于反证法. |
主要考查直线与直线、直线与平面的位置关系的综合应用及线面角,点面间距离等概念应用,空间想象力及推理能力. |
科目:高中数学 来源:湖北省荆州中学2008高考复习立体几何基础题题库二(有详细答案)人教版 人教版 题型:044
在空间四边形ABCP中,PA⊥PC,PB⊥BC,AC⊥BC.PA、PB与平面ABC所成角分别为30°和45°.
(1)直线PC与AB能否垂直?证明你的结论;
(2)若点P到平面ABC的距离为h,求点P到直线AB的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com