精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.

(1)求实数k的取值范围;

(2)证明:f(x)的极大值不小于1

【答案】(1);(2)见解析

【解析】

(1)求出,记,问题转化为方程有两个不同解,求导,研究极值即可得结果 ;

(2)由(1)知,在区间上存在极大值点,且,则可求出极大值,记,求导,求单调性,求出极值即可.

(1),由

,且时,单调递减,

时,单调递增,

由题意,方程有两个不同解,所以

(2)解法一:由(1)知,在区间上存在极大值点,且

所以的极大值为

,则

因为,所以

所以时,单调递减,时,单调递增,

所以,即函数的极大值不小于1.

解法二:由(1)知,在区间上存在极大值点,且

所以的极大值为

因为,所以.

即函数的极大值不小于1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电子设备工厂生产一种电子元件,质量控制工程师要在产品出厂前将次品检出.估计这个厂生产的电子元件的次品率为0.2%,且电子元件是否为次品相互独立,一般的检测流程是:先把电子元件串联起来成组进行检验,若检测通过,则全部为正品;若检测不通过,则至少有一个次品,再逐一检测,直到把所有的次品找出,若检验一个电子元件的花费为5分钱,检验一组(个)电子元件的花费为分钱.

1)当时,估算一组待检元件中有次品的概率;

2)设每个电子元件检测费用的期望为,求的表达式;

3)试估计的值,使每个电子元件的检测费用的期望最小.(提示:用进行估算)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的空间几何体中,四边形为直角梯形,,且平面平面为棱中点.

1)证明:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x3x22xaR.

1)当a=3时,求函数的单调递减区间;

2)若对于任意x都有成立,求实数a的取值范围;

3)若过点可作函数图象的三条不同切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)若直线l1l2的极坐标方程分别为,设直线l1l2与曲线C的交点分别为OMON,求OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,判断函数的单调性;

2)当时,记的两个极值点为,若不等式恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面是正方形,梯形底面,且

(Ⅰ)证明平面平面

(Ⅱ)平面将多面体分成两部分,求两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数R上的增函数,求实数a的取值范围;

(Ⅱ)讨论函数上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),().

1)若恒成立,求实数的取值范围;

2)当时,过上一点的切线,判断:可以作出多少条切线,并说明理由.

查看答案和解析>>

同步练习册答案