精英家教网 > 高中数学 > 题目详情
(2011•武汉模拟)过抛物线y2=4x的焦点F的直线与抛物线交于A、B两点,则
OA
OB
=
-3
-3
分析:由抛物线y2=4x与过其焦点( 1,0)的直线方程联立,消去y整理成关于x的一元二次方程,设出A(x1,y1)、B(x2,y2)两点坐标,
OA
• 
OB
=x1•x2+y1•y2,由韦达定理可以求得答案.
解答:解:由题意知,抛物线y2=4x的焦点坐标为( 1,0),∴直线AB的方程为y=k(x-1),
y2=4x
y=k(x-1)
得k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),
x1+x2=
2k2+ 4
k2
x1x2=1
,y1•y2=k(x1-1)•k(x2-1)=k2[x1•x2-(x1+x2)+1]
OA
OB
=x1•x2+y1•y2=1+k2(2-
2k2+4
k2
) =-3

故答案为:-3.
点评:本题的考点是直线与圆锥曲线的关系,主要考查抛物线的标准方程,以及简单性质的应用,关键是利用
OA
• 
OB
=x1•x2+y1•y2,进而得解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•武汉模拟)在△ABC中,O为中线AM上的一个动点,若AM=2,则
OA
•(
OB
+
OC
)
的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武汉模拟)已知二面角α-l-β的平面角为θ,PA⊥α,PB⊥β,A、B为垂足,PA=5,PB=4,点A、B到棱l的距离分别为x、y,当θ变化时,点(x,y)的轨迹是下列图形中的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武汉模拟)设等差数列{an}的前n项和为Sn,若S3=12,则a2=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武汉模拟)在平面直角坐标系xoy中,给定两定点M(-1,2)和N(1,4),点P在x轴的正半轴上移动,当∠MPN取最大值时,点P的横坐标是
1
1

查看答案和解析>>

同步练习册答案