精英家教网 > 高中数学 > 题目详情
是数列{}的前n项和,且,则{}是(    )

  A.等比数列,但不是等差数列

  B.等差数列,但不是等比数列

  C.等差数列,而且也是等比数列

  D.既非等比数列又非等差数列

答案:B
提示:

,∴  ,B正确.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=
x
x+1
.数列{an}满足:an>0,a1=1,且
an+1
=f(
an
)
,记数列{bn}的前n项和为Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(I)给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,则称数列{cn}是“M类数列”.
(i)若an=3•2n,n∈N*,数列{an}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(ii)若数列{bn}的前n项和为Sn=n2+n,证明数列{bn}是“M类数列”.
(Ⅱ)若数列{an}满足a1=2,an+an+1=2n(n∈N*),求数列{an}前2013项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)对于给定数列{cn},如果存在实常数p、q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”;
(1)若an=2n,数列{an}是否为“M类数列”?若是,指出它对应的实常数p、q,若不是,请说明理由;
(2)数列{an}满足a1=2,an+an+1=3•2n(n∈N*),若数列{an}是“M类数列”,求数列{an}的通项公式;
(3)记数列{an}的前n项之和为Sn,求证:
4
S1S2
+
4
S2S3
+
4
S3S4
+…+
4
SnSn+1
19
42
(n≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区三模)已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),ai+aj与aj-ai至少一个属于A,
(1)分别判断集合M={0,2,4}与N=(1,2,3)是否具有性质P,并说明理由;
(2)①求证:0∈A;②当n=3时,集合A中元素a1、a2、a3是否一定成等差数列,若是,请证明;若不是,请说明理由;
(3)对于集合A中元素a1、a2、…an,若an=2012,求数列{an}的前n项和Sn(用n表示).

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高二上学期数学单元测试1 题型:填空题

 若是数列{an}的前n项和,且=            .

 

查看答案和解析>>

同步练习册答案