精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x3+x2+mx+1在区间(-1,2)上不是单调函数,则实数m的取值范围是(  )
A.(-∞,-16)∪($\frac{1}{3}$,+∞)B.[-16,$\frac{1}{3}$]C.(-16,$\frac{1}{3}$)D.($\frac{1}{3}$,+∞)

分析 求出函数的导数,利用函数在区间(-1,2)上不是单调函数,声明导函数在区间上有零点,转化求解即可.

解答 解:函数f(x)=x3+x2+mx+1,可得f′(x)=3x2+2x+m,
函数f(x)=x3+x2+mx+1在区间(-1,2)上不是单调函数,
可知f′(x)=3x2+2x+m,在区间(-1,2)上有零点,
导函数f′(x)=3x2+2x+m对称轴为:x=$-\frac{1}{3}$∈(-1,2),
只需:$\left\{\begin{array}{l}{4-12m>0}\\{12+4+m>0}\end{array}\right.$,解得m∈(-16,$\frac{1}{3}$).
故选:C.

点评 本题考查函数与导数的应用,函数的最值以及函数的极值的求法,考查转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每满6万元,可减6千元;方案二:金额超过6万元(含6万元),可摇号三次,其规则是依次装有2个幸运号、2个吉祥号的一个摇号机,装有2个幸运号、2个吉祥号的二号摇号机,装有1个幸运号、3个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出3个幸运号则打6折,若摇出2个幸运号则打7折;若摇出1个幸运号则打8折;若没有摇出幸运号则不打折.
(1)若某型号的车正好6万元,两个顾客都选中第二中方案,求至少有一名顾客比选择方案一更优惠的概率;
(2)若你评优看中一款价格为10万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合M={x|4≤x≤7},N={3,5,8},则M∩N={5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.四个不同的小球,全部放入编号为1,2,3,4,5的五个盒子中.(结果写成数字)
(1)1号盒子中有球的放法有多少种?
(2)恰有两个空盒的放法有多少种?
(3)恰有三个空盒的放法有多少种?
(4)甲球所放盒的编号不小于乙球所放盒的编号的放法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y满足约束条件$\left\{\begin{array}{l}{x≥y}\\{y≥4x-3}\\{x≥0,y≥0}\end{array}\right.$,若目标函数$z=x+\frac{n}{2}y({n>0})$,z最大值为2,则$y=tan({nx+\frac{π}{6}})$的图象向右平移$\frac{π}{6}$后的表达式为(  )
A.$y=tan({2x+\frac{π}{6}})$B.$y=cot({x-\frac{π}{6}})$C.$y=tan({2x-\frac{π}{6}})$D.y=tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某大学的男生的体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立回归方程$\stackrel{∧}{y}$=0.85x-85.71,则下列结论中不正确的是(  )
A.y与x具有正的线性相关关系
B.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
C.过该大学某女生身高增加1cm,则其体重约增加0.85kg
D.回归直线过样本的中心$(\overline x,\overline y)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,${a_1}=1,{a_{n+1}}=2{a_n}+n-1({n∈{N^*}})$,则其前n项和Sn=${2^{n+1}}-2-\frac{{n({n+1})}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合$A=\left\{{y|y=\sqrt{3-2x},x∈[{-\frac{13}{2},\frac{3}{2}}]}\right\}$,B={x|1-m≤x≤m+1}.
(1)若m=2,求A∩B;
(2)若B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,设S为△ABC的面积,满足S=$\frac{\sqrt{3}}{4}$(a2+b2-c2).
(1)求角C的弧度数;
(2)若c=$\sqrt{3}$,求a+b的最大值.

查看答案和解析>>

同步练习册答案