精英家教网 > 高中数学 > 题目详情

【题目】已知).

(1)当时,求关于的不等式的解集;

(2)若fx)是偶函数,求k的值;

(3)在(2)条件下,设,若函数的图象有公共点,求实数b的取值范围.

【答案】(1)(2)1(3)

【解析】

1)根据条件列指数不等式,直接求解即可;

2)利用偶函数定义列直接求解即可;

3)根据题意列方程,令,得到方程,构造,结合二次函数性质讨论方程的根即可.

(1)因为

所以原不等式的解集为

(2)因为的定义域为为偶函数,

所以

所以. 经检验满足题意.

(3)有(2)可得

因为函数的图象有公共点

所以方程有根

有根

方程可化为(*)

恒过定点

①当时,即时,(*)在上有根

(舍);

②当时,即时,(*)在上有根

因为,则(*)方程在上必有一根

成立;

③当时,(*)在上有根

则有

④当时,(*)在上有根

则有

综上可得:的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮.某公司研发的两种芯片都已经获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.

(1)试分别求出生产两种芯片的毛收入(千万元)与投入资金(千万元)的函数关系式;

(2)如果公司只生产一种芯片,生产哪种芯片毛收入更大?

(3)现在公司准备投入亿元资金同时生产两种芯片,设投入千万元生产芯片,用表示公司所过利润,当为多少时,可以获得最大利润?并求最大利润.(利润芯片毛收入芯片毛收入研发耗费资金)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于任意的 ,都有, 当时,,且.

( I ) 求的值;

(II) 当时,求函数的最大值和最小值;

(III) 设函数,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(12分)

(1)若函数上为增函数,求实数的取值范围;

(2)当时,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求实数的取值范围;

(2)若存在,使得,求实数的取值范围;

(3)若对于恒成立,试问是否存在实数,使得成立?若存在,求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的件产品作为样本,称出它们的重量(单位:克),重量的分组区间为,…,,由此得到样本的频率分布方图,如图所示.

(1)在上述抽取的件产品中任取件,设为取到重量超过克的产品件数,求的概率;

(2)从上述件产品中任取件,设为取到重量超过克的产品件数,求的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50岁

_______

_______

80

年龄大于50岁

10

_______

_______

合计

_______

70

100

(1)根据已知数据,把表格填写完整;

(2)是否有95%的把握认为年龄与支持申办奥运有关?

附表:

0.100

0.050

0.025

0.010

2.706

3.814

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}前n项和为Sn , 且满足S3= ,a6 , 3a5 , a7成等差数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn= ,且数列bn的前n项的和Tn , 试比较Tn 的大小.

查看答案和解析>>

同步练习册答案