精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线是圆心在极轴上且经过极点的圆,射线与曲线交于点.

1)求曲线的普通方程和曲线的直角坐标方程;

2)已知极坐标系中两点,若都在曲线上,求的值.

【答案】1;(2.

【解析】

1)在曲线的参数方程中消去参数可得出曲线的普通方程,根据题意设曲线的极坐标方程为为半径),将点的极坐标代入曲线的极坐标方程,求出的值,可得出曲线的极坐标方程,确定曲线的形状,可得出曲线的普通方程;

2)将曲线的方程化为极坐标方程为,将点的极坐标代入曲线的极坐标方程可得出的表达式,代入可求出的值.

1的参数方程为的普通方程为

由题意,设曲线的极坐标方程为为半径),

代入,得

的圆心的直角坐标为,半径为

因此,的直角坐标方程为

2)曲线的极坐标方程为,即

.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是国家统计局今年411日发布的20183月到20193月全国居民消费价格的涨跌幅情况折线图.(注:20192月与20182月相比较称同比,20192月与20191月相比较称环比),根据该折线图,下列结论错误的是

A. 20183月至20193月全国居民消费价格同比均上涨

B. 20183月至20193月全国居民消费价格环比有涨有跌

C. 20193月全国居民消费价格同比涨幅最大

D. 20193月全国居民消费价格环比变化最快

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系,曲线的参数方程为(其中为参数)曲线的普通方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

1)求曲线和曲线的极坐标方程;

2)射线:依次与曲线和曲线交于两点,射线:依次与曲线和曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】荷花池中,有一只青蛙在成字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在荷叶上,则跳三次之后停在荷叶上的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,上顶点为,过的直线交椭圆.重合时,的面积分别为.

1)求椭圆的方程;

2)在轴上找,当变化时,为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生09之间取整数值的随机数,指定2468表示命中十环,013579表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:

321 421 292 925 274 632 800 478 598 663 531 297 396

021 506 318 230 113 507 965

据此估计,小张三次射击恰有两次命中十环的概率为()

A. 0.25B. 0.30C. 0.35D. 0.40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数).

(Ⅰ)若,求函数的单调递增区间;

(Ⅱ)若函数有两个不同的零点

(ⅰ)当时,求实数的取值范围;

(ⅱ)设的导函数为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的展开式中,求:

1)二项式系数的和;

2)各项系数的和;

3)奇数项的二项式系数和与偶数项的二项式系数和;

4)奇数项系数和与偶数项系数和;

5的奇次项系数和与的偶次项系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知px2≤5x-4,qx2-(a+2)x+2a≤0.

(1)p是真命题,求对应x的取值范围;

(2)pq的必要不充分条件,求a的取值范围.

查看答案和解析>>

同步练习册答案