精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

【答案】(1);(2)

【解析】

(1)由题可知,求得直线的方程,再由点到直线的距离公式,联立求得的值,即可得到椭圆的标准方程;

(2)由直线与圆相切,求得,再把直线方程与圆的方程联立,利用根与系数的关系和弦长公式,分别求得,即计算求得三角形的周长。

(1)由题可知,,则

直线的方程为,即,所以

解得

,所以椭圆的标准方程为.

(2)因为直线与圆相切,

所以,即.

联立,得

所以

所以 .

,所以.

因为

同理.

所以

所以的周长是

的周长为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某项数学竞赛考试共四道题,考察内容分别为代数、几何、数论、组合,已知前两题每题满分40分,后两题每题满分60分,题目难度随题号依次递增,已知学生甲答题时,若该题会做则必得满分,若该题不会做则不作答得0分,通过对学生甲以往测试情况的统计,得到他在同类模拟考试中各题的得分率,如表所示:

假设学生甲每次考试各题的得分相互独立.

1)若此项竞赛考试四道题的顺序依次为代数、几何、数论、组合,试预测学生甲考试得160分的概率;

2)学生甲研究该项竞赛近五年的试题发现第1题都是代数题,于是他在赛前针对代数版块进行了强化训练,并取得了很大进步,现在,只要代数题是在试卷第12题的位置,他就一定能答对,若今年该项数学竞赛考试四道题的顺序依次为代数、数论、组合、几何,试求学生甲此次考试得分X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周易》是我国古代典籍,用描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中表示一个阳爻,表示一个阴爻).若从八卦中任取两卦,这两卦的六个爻中恰有一个阳爻的概率为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,是其准线上任意一点,过点作直线与抛物线相切,为切点,轴分别交于两点.

1)求焦点的坐标,并证明直线过点

2)求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019新型冠状病毒感染的肺炎的传播有飞沫、气溶胶、接触等途径,为了有效抗击疫情,隔离性防护是一项具体有效措施.某市为有效防护疫情,宣传居民尽可能不外出,鼓励居民的生活必需品可在网上下单,商品由快递业务公司统一配送(配送费由政府补贴).快递业务主要由甲公司与乙公司两家快递公司承接:“快递员”的工资是“底薪+送件提成”.这两家公司对“快递员”的日工资方案为:甲公司规定快递员每天底薪为70元,每送件一次提成1元;乙公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成5元,假设同一公司的快递员每天送件数相同,现从这两家公司往年忙季各随机抽取一名快递员并调取其100天的送件数,得到如下条形图:

1)求乙公司的快递员一日工资y(单位:元)与送件数n的函数关系;

2)若将频率视为概率,回答下列问题:

①记甲公司的“快递员”日工资为X(单位:元).求X的分布列和数学期望;

②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.

(Ⅰ)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.

身高较矮

身高较高

合计

体重较轻

体重较重

合计

(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:

编号

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

体重

57

58

53

61

66

57

50

66

根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);

编号

1

2

3

4

5

6

7

8

体重(kg

57

58

53

61

66

57

50

66

残差

②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.

参考数据:

参考公式:

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求函数图象在处的切线方程;

(2)若对任意,不等式恒成立,求的取值范围;

(3)若存在极大值和极小值,且极大值小于极小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线的普通方程和直线的直角坐标方程;

2)已知点,点为曲线上的动点,求线段的中点到直线的距离的最大值.并求此时点的坐标.

查看答案和解析>>

同步练习册答案