精英家教网 > 高中数学 > 题目详情
某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是
13
,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该学生考上大学的概率;
(2)如果考上大学或参加完5次考试就结束,求该生至少参加四次考试的概率.
分析:(1)记“该生考上大学”的事件为A,其对立事件为
.
A
,直接求P(A)比较困难,于是通过求1-P(
.
A
)来得到P(A)的值.
(2)记“该生参加测试的次数”为ξ,求出P(ξ=4)和P(ξ=5)的值,相加即得所求.
解答:解:(1)记“该生考上大学”的事件为A,其对立事件为
.
A

P(
.
A
)=
C
1
4
(
1
3
)(
2
3
)3(
2
3
)+(
2
3
)4=
112
243

P(A)=1-P(
.
A
)=1-
112
243
=
131
243
.…(6分)
(2)记“该生参加测试的次数”为ξ,则ξ=4说明前3次考试只通过了1次,而第4次通过了,或前4次都没有通过,
P(ξ=4)=
C
1
3
(
1
3
)(
2
3
)2(
1
3
)+(
2
3
)4=
4
27
+
16
81
=
28
81

ξ=5说明前4次考试只通过了1次,,故 P(ξ=5)=
C
1
4
(
1
3
)(
2
3
)3=
32
81

∴该生至少参加四次考试的概率P=
28
81
+
32
81
=
20
27
.…(12分)
点评:本题主要考查n次独立重复实验中恰好发生k次的概率,互斥事件的概率加法公式,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某地区试行高考考试改革:在高三学年中举行4次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不再参加其余的测试,而每个学生最多也只能参加4次测试.假设某学生每次通过测试的概率都是
23
,每次测试时间间隔恰当,每次测试通过与否互相独立.
(Ⅰ)求该学生在前两次测试中至少有一次通过的概率;
(Ⅱ)如果考上大学或参加完4次测试,那么测试就结束.记该生参加测试的次数为X,求X的分布列及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中的2次测试即可获得足够学分升上大学继续学习,不用参加后面的测试,而每个学生最多也只能参加5次测试,假设某学生每次通过测试的概率都是
13
,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该学生恰好经过4次测试考上大学的概率;
(2)求该学生考上大学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是
13
,每次测试时间间隔恰当,每次测试通过与否互相独立.
(1)求该学生考上大学的概率.
(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为X,求X的分布列及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是
13
,每次测试通过与否互相独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(I)求该学生考上大学的概率;
(II)如果考上大学或参加完5次测试就结束,求该生参加测试的次数为4的概率.

查看答案和解析>>

同步练习册答案