【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报元;
方案二:第一天回报元,以后每天比前一天多回报元;
方案三:第一天回报元,以后每天的回报比前一天翻一番.
记三种方案第天的回报分别为,,.
(1)根据数列的定义判断数列,,的类型,并据此写出三个数列的通项公式;
(2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.
科目:高中数学 来源: 题型:
【题目】在直角坐标系 中,曲线 的参数方程为 (为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .
(1)求直线和曲线的普通方程;
(2)已知点,且直线和曲线交于两点,求 的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区名居民参加年国庆活动,他们的年龄在岁至岁之间,将年龄按、、、、分组,得到的频率分布直方图如图所示.
(1)求的值,并求该社区参加年国庆活动的居民的平均年龄(每个分组取中间值作代表);
(2)现从年龄在、的人员中按分层抽样的方法抽取人,再从这人中随机抽取人进行座谈,用表示参与座谈的居民的年龄在的人数,求的分布列和数学期望;
(3)若用样本的频率代替概率,用随机抽样的方法从该地岁至岁之间的市民中抽取名进行调查,其中有名市民的年龄在的概率为,当最大时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,连接FA,与抛物线C相交于点M,延长FA,与抛物线C的准线相交于点N,若|FM|:|MN|=1:2,则实数a的值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生对函数的性质进行研究,得出如下的结论:
函数在上单调递减,在上单调递增;
点是函数图象的一个对称中心;
函数图象关于直线对称;
存在常数,使对一切实数x均成立,
其中正确命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm至185cm之间;女性身高普遍在163cm至175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm至190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:“某一阅兵女子身高不低于169cm”,根据直方图得到P(C)的估计值为0.5.
(1)求直方图中a,b的值;
(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在复平面内,给出以下四个说法:
①实轴上的点表示的数均为实数;
②虚轴上的点表示的数均为纯虚数;
③互为共轭复数的两个复数的实部相等,虚部互为相反数;
④已知复数满足,则在复平面内所对应的点位于第四象限.
其中说法正确的个数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,则下列命题中正确命题的个数是( )
①函数在上为周期函数
②函数在区间,上单调递增
③函数在()取到最大值,且无最小值
④若方程()有且仅有两个不同的实根,则
A.个B.个C.个D.个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com