精英家教网 > 高中数学 > 题目详情

公差不为0的等差数列{an}的前n项和为Sn,若数学公式也是等差数列,则数学公式的前n项和为________.


分析:设出等差数列{an}的公差为d,首项为a1,然后根据也是等差数列,代入可求出a1与d的关系,再根据等差数列前n项和公式进行求解;
解答:设等差数列{an},首项a1,公差为d,
∴a2=a1+d,a3=a1+2d,
也是等差数列,
+=2×
+=2×
可得a1d=d2,d≠0,可得a1=d,
∴对于数列
首项为=1,公差为:=-1=
的前n项和为:Tn=n()+=n+=(n=1,2,3…);
故答案为:
点评:此题主要考查等差数列的性质及其应用是一道基础题,但也是一道好题,考查的知识点比较全面;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足a1,a3,a4成等比关系,Sn为{an}的前n项和,则
S3-S2
S5-S3
的值为(  )
A、2
B、3
C、
1
5
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1=2,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,求数列{
1Sn
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若Sn是公差不为0的等差数列{an}的前n项和,则S1,S2,S4成等比数列.
(1)求数列S1,S2,S4的公比;
(2)若S2=4,求{an}的通项公式;
(3)在(2)条件下,若bn=an-14,求{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
an
an+1
+
an+1
an
,求数列{bn}的前n项和Sn
(Ⅲ)设cn=2n(
an+1
n
-λ)
,若数列{cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公差不为0的等差数列,a1=2,且a1,a3,a6成等比数列,则a5的值为
4
4

查看答案和解析>>

同步练习册答案