精英家教网 > 高中数学 > 题目详情

【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照 ,…, 分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)

(Ⅰ)求频率分布直方图中字母的值,并求该组的频率;

(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数的值(保留两位小数);

(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是. 若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.

【答案】(Ⅰ)(Ⅱ)8.15;(Ⅲ)吨.

【解析】试题分析:根据个矩形面积和为 可得结果;(利用 左右面积都是 列方程可得结果;根据前六个月平均用水量,利用回归方程估算出前六个月平均费用,总费用减去前六个月的费用和即可得结果.

试题解析:(Ⅰ)∵

第四组的频率为:

(Ⅱ)因为

所以8.15

(Ⅲ)∵,且

所以张某7月份的用水费为

设张某7月份的用水吨数吨,

.

则张某7月份的用水吨数吨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是数列的前项和, .

(1)求证:数列是等差数列,并求的通项;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】车间计划每天生产卡车模型、赛车模型、小汽车模型这三种玩具共100个,已知生产一个卡车模型需5分钟,生产一个赛车模型需7分钟,生产个小汽车模型需4分钟且生产一个卡车模型可获利润8元,生产一个赛车模型可获利润9元,生产一个小汽车模型可获利润6元.若总生产时间不超过10小时,该公司合理分配生产任务使每天的利润最大,则最大利润是______________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥的三组相对棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为,其中,则该三棱锥体积的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线相切,且与轴的交点为,点.若动点与两定点所构成三角形的周长为6.

(Ⅰ) 求动点的轨迹的方程;

(Ⅱ) 设斜率为的直线交曲线两点,当,且位于直线的两侧时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在区间上单调递增,求的取值范围;

(2)若函数的图象与直线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD﹣A1B1C1D1的棱长为8cm,M,N,P分别是AB,A1D1 , BB1的中点.
(1)画出过M,N,P三点的平面与平面A1B1C1D1的交线以及与平面BB1C1C的交线;
(2)设过M,N,P三点的平面与B1C1交于Q,求PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为为参数).

1)判断直线与曲线的位置关系,并说明理由;

2)若直线和曲线相交于两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c,d∈E,证明下列不等式:
(1)(a2+b2)(c2+d2)≥(ac+bd)2
(2)a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

同步练习册答案