分析 (1)设AB的中点为F,连结DF,CF,则DF⊥AB,CF⊥AB,从而AB⊥平面CFD,推导出DF⊥AB,从而DF⊥平面ABC,由DF∥CE,能证明DE⊥AB.
(2)以F为坐标原点,建立空间直角坐标系,利用向量法能求出二面角D-BE-A的余弦值.
解答 证明:(1)设AB的中点为F,连结DF,CF,
∵△ABC,△ABD均为等边三角形,∴DF⊥AB,CF⊥AB,
∵DF∩CF=F,∴AB⊥平面CFD,
∵平面ABC⊥平面ABD,DF⊥AB,∴DF⊥平面ABC,
∵EC⊥平面ABC,∴DF∥CE,
∴E∈平面DFC,∴DE?平面DFC,
∴DE⊥AB.
解:(2)如图,以F为坐标原点,建立空间直角坐标系,
则B(1,0,0),E(0,$\sqrt{3}$,$\frac{\sqrt{3}}{2}$),D(0,0,$\sqrt{3}$),A(-1,0,0),
∴$\overrightarrow{AB}$=(2,0,0),$\overrightarrow{BE}$=(-1,$\sqrt{3}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BD}$=(-1,0,$\sqrt{3}$),
设平面ABE的法向量$\overrightarrow{n}$=(x,y,z),平面DBE的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=2x=0}\\{\overrightarrow{n}•\overrightarrow{BE}=-x+\sqrt{3}y+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,-2),
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BE}=-a+\sqrt{3}b+\frac{\sqrt{3}}{2}c=0}\\{\overrightarrow{m}•\overrightarrow{BD}=-a+\sqrt{3}c=0}\end{array}\right.$,取a=$\sqrt{3}$,得$\overrightarrow{m}$=($\sqrt{3},\frac{1}{2},1$),
设二面角D-BE-A的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{85}}{85}$,
∴二面角D-BE-A的余弦值为$\frac{3\sqrt{85}}{85}$.
点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|0<x<2} | B. | {x|1<x<2} | C. | {x|x>0} | D. | {x|x≥1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1+$\frac{π}{3}$ | B. | 1+$\frac{π}{6}$ | C. | $\frac{2}{3}$+$\frac{π}{3}$ | D. | $\frac{2}{3}$+$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com