精英家教网 > 高中数学 > 题目详情
16.如图,以A,B,C,D,E为顶点的六面体中,△ABC和△ABD均为正三角形,且平面ABC⊥平面ABD,EC⊥面ABC,EC=$\frac{{\sqrt{3}}}{2}$,AB=2.
(1)求证:DE⊥AB;
(2)求二面角D-BE-A的余弦值.

分析 (1)设AB的中点为F,连结DF,CF,则DF⊥AB,CF⊥AB,从而AB⊥平面CFD,推导出DF⊥AB,从而DF⊥平面ABC,由DF∥CE,能证明DE⊥AB.
(2)以F为坐标原点,建立空间直角坐标系,利用向量法能求出二面角D-BE-A的余弦值.

解答 证明:(1)设AB的中点为F,连结DF,CF,
∵△ABC,△ABD均为等边三角形,∴DF⊥AB,CF⊥AB,
∵DF∩CF=F,∴AB⊥平面CFD,
∵平面ABC⊥平面ABD,DF⊥AB,∴DF⊥平面ABC,
∵EC⊥平面ABC,∴DF∥CE,
∴E∈平面DFC,∴DE?平面DFC,
∴DE⊥AB.
解:(2)如图,以F为坐标原点,建立空间直角坐标系,
则B(1,0,0),E(0,$\sqrt{3}$,$\frac{\sqrt{3}}{2}$),D(0,0,$\sqrt{3}$),A(-1,0,0),
∴$\overrightarrow{AB}$=(2,0,0),$\overrightarrow{BE}$=(-1,$\sqrt{3}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BD}$=(-1,0,$\sqrt{3}$),
设平面ABE的法向量$\overrightarrow{n}$=(x,y,z),平面DBE的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=2x=0}\\{\overrightarrow{n}•\overrightarrow{BE}=-x+\sqrt{3}y+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,-2),
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BE}=-a+\sqrt{3}b+\frac{\sqrt{3}}{2}c=0}\\{\overrightarrow{m}•\overrightarrow{BD}=-a+\sqrt{3}c=0}\end{array}\right.$,取a=$\sqrt{3}$,得$\overrightarrow{m}$=($\sqrt{3},\frac{1}{2},1$),
设二面角D-BE-A的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{85}}{85}$,
∴二面角D-BE-A的余弦值为$\frac{3\sqrt{85}}{85}$.

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在直角梯形ABCD中,∠ADC=∠BAD=90°,AB=AD=1,CD=2,平面SAD⊥平面ABCD,平面SDC⊥平面ABCD,SD=$\sqrt{3}$,在线段SA上取一点E(不含端点)使EC=AC,截面CDE交SB于点F.
(1)求证:EF∥CD;
(2)求三棱锥S-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线的焦点,∠MFx=60°且|FM|=4.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知点P在y轴正半轴,直线PF交抛物线C于A(x1,y1)、B(x2,y2)两点,其中y1>0,y2<0,试问$\frac{|PA|}{|AF|}$-$\frac{|PB|}{|BF|}$是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.二项式${({{x^2}-\frac{1}{x}})^6}$的展开式中(  )
A.不含x9B.含x4C.含x2D.不含x项

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.一环保人士当地某年的AQI记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI大于100的天数约为为146.(该年为365天)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知M={x|0<x<2},N={x|y=lg(x-1)},则M∩N=(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|x>0}D.{x|x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个由半圆锥和平放的直三棱柱(侧棱垂直于底面的三棱柱)组成的几何体,其三视图如图所示,则该几何体的体积为(  )
A.1+$\frac{π}{3}$B.1+$\frac{π}{6}$C.$\frac{2}{3}$+$\frac{π}{3}$D.$\frac{2}{3}$+$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z1=1-i,z2=1+i,其中i是虚数单位,则$\frac{{z}_{1}}{{z}_{2}}$的模为(  )
A.$\frac{1}{4}$B.$\sqrt{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)={x^2}+\frac{1}{x+1},x∈[0,1]$.
(1)证明:$f(x)≥{x^2}-\frac{4}{9}x+\frac{8}{9}$;
(2)证明:$\frac{68}{81}<f(x)≤\frac{3}{2}$.

查看答案和解析>>

同步练习册答案