精英家教网 > 高中数学 > 题目详情
(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若M,N分别是CC1,AB的中点,求证:CN //平面AB1M;
(Ⅲ)若,求二面角A-MB1-C的大小.

证明:(Ⅰ)因为三棱柱ABC-A1B1C1中CC1⊥平面ABC,
所以CC1⊥BC.                    ……………………1分
因为AC=BC=2,
所以由勾股定理的逆定理知BC⊥AC. ……………………2分
因为AC∩CC1=C,
所以BC⊥平面ACC1A1.             ……………………3分
因为AM平面ACC1A1,

所以BC⊥AM.                     ……………………4分
(Ⅱ)连结A1B交AB1于P.             ……………………5分
因为三棱柱ABC-A1B1C1,
所以P是A1B的中点.
因为M,N分别是CC1,AB的中点,
所以NP // CM,且NP = CM,
所以四边形MCNP是平行四边形,     ……………………6分
所以CN//MP.                     ……………………7分
因为CN平面AB1M,MP平面AB1M,  ………………8分
所以CN //平面AB1M.              ……………………9分
(Ⅲ)因为BC⊥AC,且CC1⊥平面ABC,
以C为原点,CA,CB,CC1分别为x轴,y轴,z轴建立空间直角坐标系C-xyz.
因为,所以C(0,0,0),A(2,0,0),B1(0,2,4),
.                                         ……………………10分
设平面的法向量,则
         ……………………11分
,则,即
又平面MB1C的一个法向量是
所以.  ………………12分
由图可知二面角A-MB1-C为锐角,
所以二面角A-MB1-C的大小为.                 ……………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设m、n是两条不同的直线,是两个不同的平面,给出下列四个命题.
①若,则
②若,则
③若,则
④若,则.
其中正确命题的序号是                           (把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,在底面半径为3,母线长为5的圆锥中内接一个高为的圆柱.
(1)求圆锥的体积.
(2)当为何值时,圆柱的表面积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是圆锥为底面中心)的侧面展开图,是其侧面展开图中弧的四等分点,则在圆锥中,下列说法错误的是(  )
A.是直线所成的角;
B.是直线与平面所成的角;
C.是二面角的平面角;
D.平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)如图,在四棱锥中,底面是边长为2的正方形,且=,的中点. 求:
(Ⅰ) 异面直线CM与PD所成的角的余弦值;
(Ⅱ)直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在如图的长方体中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)当EAB的中点时,求点E到平面ACD1的距离;
(2)AE等于何值时,二面D1-EC-D的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)如图,在梯形中,,四边形为矩形,平面平面.
(I)求证:平面
(II)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求点E到平面ACD的距离;
(III)求二面角A—CD—B的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数是以为周期的奇函数,,且,则_____________.

查看答案和解析>>

同步练习册答案