精英家教网 > 高中数学 > 题目详情
已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,椭圆的短轴端点与双曲线
y2
2
-x2
=1的焦点重合,过P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭C的方程;
(Ⅱ)求
OA
OB
的取值范围.
分析:(I)由双曲线
y2
2
-x2
=1得焦点(0,±
3
)
,得b=
3
.又e=
c
a
=
1
2
,a2=b2+c2,联立解得即可;
(II)由题意可知直线l的斜率存在,设直线l的方程为y=k(x-4),与椭圆方程联立得到,(4k2+3)x2-32k2x+64k2-12=0,由△>0得k2
1
4
.设A(x1,y1),B(x2,y2),利用根与系数的关系可得
OA
OB
=x1x2+y1y2,进而得到取值范围.
解答:解:(I)由双曲线
y2
2
-x2
=1得焦点(0,±
3
)
,得b=
3

e=
c
a
=
1
2
,a2=b2+c2,联立解得a2=4,c=1.
故椭圆C的方程为
x2
4
+
y2
3
=1

(II)由题意可知直线l的斜率存在,设直线l的方程为y=k(x-4),联立
y=k(x-4)
x2
4
+
y2
3
=1

(4k2+3)x2-32k2x+64k2-12=0,
由△=(-32k22-4(4k2+3)(64k2-12)>0得k2
1
4

设A(x1,y1),B(x2,y2),则x1+x2=
32k2
4k2+3
x1x2=
64k2-12
4k2+3

y1y2=k2(x1-4)(x2-4)=k2x1x2-4k2(x1+x2)+16k2
OA
OB
=x1x2+y1y2=(1+k2)•
64k2-12
4k2+3
-4k2
32k2
4k2+3
+16k2
=25-
87
4k2+3

0≤k2
1
4
,∴-
87
3
87
4k2+3
<-
87
4

OA
OB
∈[-4,
13
4
)

OA
OB
的取值范围为[-4,
13
4
)
点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到判别式△>0即根与系数的关系、数量积运算等基础知识与基本技能,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4+2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=
4
3
上动点P(x0,y0)(x0-y0≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知椭C:
x2
a2
+
y2
b2
=1
(a>b>0),以椭圆短轴的一个顶点B与两个焦点F1,F2为顶点的三角形周长是4+2
3
,且∠BF1F2=
π
6

(1)求椭圆C的标准方程;
(2)若过点Q(1,
1
2
)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:崇明县二模 题型:解答题

已知椭C:
x2
a2
+
y2
b2
=1
(a>b>0),以椭圆短轴的一个顶点B与两个焦点F1,F2为顶点的三角形周长是4+2
3
,且∠BF1F2=
π
6

(1)求椭圆C的标准方程;
(2)若过点Q(1,
1
2
)引曲线C的弦AB恰好被点Q平分,求弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4+2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=
4
3
上动点P(x0,y0)(x0-y0≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.

查看答案和解析>>

同步练习册答案