精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求函数f(x)的单调区间;
(2)是否存在实数a,使得函数f(x)的极值大于0?若存在,求a的取值范围;若不存在,说明理由.

解:(1)∵f(x)=lnx-ax2+x,a∈R,∴f′(x)=-ax+1=(x>0),
∴当a=0时,f′(x)>0,故f(x)在(0,+∞)上单调递增;
当a<0时,由于x>0,故-ax2>0,于是-ax2+x+1>0,
∴f′(x)>0,故f(x)在(0,+∞)上单调递增;
当a>0时,f′(x)>0得,0<x<,即f(x)在(0,)上单调递增;
由f′(x)<0得,x>,即f(x)在(,+∞)上单调递减;
(2)由(1)可知,当a>0,x=时函数取到极大值,此时
∵x→0,f(x)<0,x→+∞,f(x)<0
∴f(x)=0有两个不等的根
有两个不等的根
有两个不等的根
构造函数y=lnx与,则两个图象有两个不同的交点
∵y=lnx过(1,0),的对称轴为直线,顶点坐标为
,解得a<2
∴0<a<2
分析:(1)由f(x)=lnx-ax2+x,可求得f′(x)=,然后对a分a=0,a>0,与a<0分类讨论,利用f′(x)>0,与f′(x)<0可得其递增区间与递减区间;
(2)由(1)可知,当a>0,函数取到极大值,此时f(x)=0有两个不等的根,即有两个不等的根构造函数y=lnx与,则两个图象有两个不同的交点,从而可求a的取值范围.
点评:本题考查利用导数研究函数的单调性,利用导数研究函数的极值,突出分类讨论思想与转化思想的渗透与应用,属于难题,第二题把有正的极大值的问题转化为图象开口向下与X轴有两个交点,思路巧妙,学习中值得借鉴.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
编写一程序求函数值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间数学公式上的函数值的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市铜山县棠张中学高三(上)周练数学试卷(理科)(11.3)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间上的函数值的取值范围.

查看答案和解析>>

同步练习册答案