A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 设f(m)=6,则由f[f(x)-log2x]=6可得f(x)-log2x=m,求出m值,设$g(x)={log_2}x-\frac{1}{xln2}$,进而分析函数的单调性,结合零点存在定理,可得答案.
解答 解:设f(m)=6,则由f[f(x)-log2x]=6可得f(x)-log2x=m,
整理可得f(x)=log2x+m,则f(m)=log2m+m=6,解得m=4,
所以f(x)=log2x+4,
所以${log_2}x+4-\frac{1}{xln2}=4$,即${log_2}x-\frac{1}{xln2}=0$,
设$g(x)={log_2}x-\frac{1}{xln2}$,由$g(1)=-\frac{1}{ln2}<0$,$g(2)=1-\frac{1}{2ln2}>0$,$g(3)={log_2}3-\frac{1}{3ln2}>0$,…且g(x)为增函数,
可得g(x)在(1,2)上存在零点,即方程f(x)-f'(x)=4的解在(1,2),
所以a=1.
故选:D.
点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2+3i | B. | -2-3i | C. | 4-3i | D. | 4+3i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{5}{2}$ | B. | $\frac{5}{2}$ | C. | -$\frac{5}{4}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com