精英家教网 > 高中数学 > 题目详情
设α∈{-1,1,,3},则使幂函数y=xα的定义域为R且为奇函数的所有α的值为
[     ]
A.-1,1,3
B.-1,1
C.1,3
D.-1,3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知bn>0(n∈N*),a1=b1=1,a2+b3=a3,S5=5(T3+b2).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求和:
b1
T1T2
+
b2
T2T3
+…+
bn
TnTn+1

查看答案和解析>>

科目:高中数学 来源:甘肃省张掖二中2012届高三9月月考数学文科试题 题型:013

设函数y=f(x)是定义域为R的奇函数,且满足f(x-2)=-f(x)对一切x∈R恒成立,当-1≤x≤1时,f(x)=x3.则下列四个命题中正确的命题是

①f(x)是以4为周期的周期函数;

②f(x)在[1,3]上的解析式为f(x)=(2-x)3

③f(x)的图象的对称轴中有x=±1;

④f(x)在处的切线方程为3x+4y=5.

[  ]
A.

①②③

B.

②③④

C.

①③④

D.

①②③④

查看答案和解析>>

科目:高中数学 来源:甘肃省张掖二中2012届高三9月月考数学理科试题 题型:013

设函数y=f(x)是定义域为R的奇函数,且满足f(x-2)=-f(x)对一切x∈R恒成立,当-1≤x≤1时,f(x)=x3.则下列四个命题中正确的命题是

①f(x)是以4为周期的周期函数;

②f(x)在[1,3]上的解析式为f(x)=(2-x)3

③f(x)的图象的对称轴中有x=±1;

④f(x)在处的切线方程为3x+4y=5.

[  ]
A.

①②③

B.

②③④

C.

①③④

D.

①②③④

查看答案和解析>>

科目:高中数学 来源:2013届安徽省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

同步练习册答案