精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系中,直线的参数方程是为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.将曲线上每一点的横坐标伸长到原来的两倍(纵坐标不变)得到曲线

1)求曲线的直角坐标方程;

2)已知点,若直线与曲线交于两点,且,求直线的斜率.

【答案】1;(2.

【解析】

1)利用极坐标公式将曲线的极坐标方程转化为直角坐标方程,再利用伸缩变换得到曲线的直角坐标方程;

(2)联立的方程,利用直线参数方程的几何意义解决长度相关问题,求得直线的斜率.

1的极坐标方程化为直角坐标方程为

将曲线上每一点的横坐标伸长到原来的两倍(纵坐标不变)得到曲线的方程为

2)将的参数方程代入

因为在圆内且在直线上,此方程一定有两个不等的实根,

对应的参数为,则

由韦达定理得,于是

消去,得,则斜率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.

安全意识强

安全意识不强

合计

男性

女性

合计

(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;

(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;

(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.

附:,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价(元)

8

8.2

8.4

8.6

8.8

9

销量(件)

90

84

83

80

75

68

1)若回归直线方程,其中;试预测当单价为10元时的销量;

2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将要举行校园歌手大赛,现有43女参加,需要安排他们的出场顺序.(结果用数字作答

1)如果3个女生都不相邻,那么有多少种不同的出场顺序?

2)如果3位女生都相邻,且男生甲不在第一个出场,那么有多少种不同的出场顺序?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求的方程;

(2)是否存在直线相交于两点,且满足:①为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只苍蝇和只蜘蛛被放置在方格表的一些交点处.一次操作包括以下步骤:首先,苍蝇移动到相邻的交点处或者原地不动,然后,每只蜘蛛移动到相邻交点处或者原地不动(同一交点可以同时停留多只蜘蛛).假设每只蜘蛛和苍蝇总是知道其他蜘蛛和苍蝇的位置.

(1)找出最小的正整数,使得在有限次操作内,蜘蛛能够抓住苍蝇,且与其初始位置无关;

(2)在的空间三维方格中,(1)中的结论又是怎样?

(注)题中相邻是指一个交点仅有一个坐标与另一个交点的同一坐标不同,且差值为1;题中抓住是指蜘蛛和苍蝇位于同一交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知若干个长方体盒子,其棱长均为不大于正奇数的正整数(允许三棱长相同),且盒壁厚度忽略不计,每个盒子的三组对面分别染为红、蓝、黄三色,若没有一个盒子能以同色面平行的方式装入另一个盒子中,则称这些盒子是“和谐的”,求最多有多少个和谐盒子?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018以来,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP抽样调查了非一线城市和一线城市100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.

1)请填写以下列联表,并判断是否有99%的把握认为用户活跃与否与所在城市有关?

活跃用户

不活跃用户

合计

城市

城市

合计

临界值表:

0.050

0.010

3.841

6.635

参考公式:.

2)以频率估计概率,从城市中任选2名用户,从城市中任选1名用户,设这3名用户中活跃用户的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,定点,定直线上的动点满足:在直线的同侧,在直线的另一侧.为焦点作与直线相切的椭圆,且当上运动时,椭圆的长轴长为定值.

(1)求直线的方程;

(2)对于第一象限内任意2012个在椭圆上的点,是否一定可以将它们分成两组,使得其中一组点的横坐标之和不大于2013,另一组点的纵坐标之和不大于2013?请证明你的结论.

查看答案和解析>>

同步练习册答案