精英家教网 > 高中数学 > 题目详情
10.已知下列命题:①若$\overrightarrow{a}•\overrightarrow{b}$<0,则$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为钝角;②a,b∈C,则“ab∈R”是“a,b互为共轭复数”的必要非充分条件;③一个骰子连续投2次,点数和为4的概率为$\frac{1}{9}$;④若n为正奇数,则6n+${C}_{n}^{1}{6}^{n-1}$+${C}_{n}^{2}{6}^{n-2}$+…+${C}_{n}^{n-1}6-1$被8除的余数是5,其中正确的序号是②④.

分析 ①由$\overrightarrow{a}•\overrightarrow{b}$<0,可知$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为钝角或180°判断;
②举例说明不充分,由$z•\overline{z}=|z{|}^{2}$说明必要;
③是一个古典概型,试验发生包含的基本事件共6×6个,满足条件的事件是点数和为4的可以列举出有(1,3)、(2,2)、(3,1)共3个,根据古典概型概率公式得到点数和为4的概率判断;
④由二项式定理,可以将6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1变形为Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8+(-1)nCnn-2,又由n为正奇数,则可得6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8-3,分析可得命题正确.

解答 解:①若$\overrightarrow{a}•\overrightarrow{b}$<0,则$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为钝角或180°.故①错误;
②a,b∈C,取a=1,b=2,满足ab∈R,a,b不互为共轭复数,反之,若a,b互为共轭复数,则ab=|a|2∈R,
则“ab∈R”是“a,b互为共轭复数”的必要非充分条件.故②正确;
③试验发生包含的基本事件共6×6=36个,满足条件的事件是点数和为4,列举出有(1,3)、(2,2)、(3,1)共3个,
∴一个骰子连续投2次,点数和为4的概率为$\frac{1}{12}$.故③错误;
④6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1
=6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6+Cnn-2
=(6+1)n-2=7n-2=(8-1)n-2
=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8+(-1)nCnn-2,
又由n为正奇数,则6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8-3,
且Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8可以被8整除,
∴6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1被8除所得的余数是5.故④正确.
∴正确命题的序号是②④.
故答案为:②④.

点评 本题考查命题的真假判断与应用,考查了平面向量的数量积运算,考查共轭复数的概念,训练了古典概型概率的求法,训练了利用二项式定理判断整除问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列从集合A到集合B的各对应关系中,为映射的是(  )
A.A={x|-1≤x≤1},B={x|0≤x≤2},f:x→y=|x|B.$A=R,B=R,f:x→y=\frac{1}{x}$
C.$A=R,B=R,f:x→y=\left\{\begin{array}{l}0,x≥0\\ 1,x≤0\end{array}\right.$D.$A=N,B=Q,f:x→y=\sqrt{x}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点P(cosθ,tanθ)在第二象限,则角θ的终边在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x,y是正实数,记S为x,$y+\frac{1}{x}$,$\frac{1}{y}$中的最小值,则S的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.绝对值|x-1|的几何意义是数轴上的点x与点1之间的距离,那么对于实数a,b,|x-a|+|x-b|的几何意义即为点x与点a、点b的距离之和.
(1)直接写出|x-1|+|x-2|与|x-1|+|x-2|+|x-3|的最小值,并写出取到最小值时x满足的条件;
(2)设a1≤a2≤…≤an是给定的n个实数,记S=|x-a1|+|x-a2|+…+|x-an|.试猜想:若n为奇数,则当x∈{${a}_{\frac{n+1}{2}}$}时S取到最小值;若n为偶数,则当x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]时,S取到最小值;(直接写出结果即可)
(3)求|x-1|+|2x-1|+|3x-1|+…+|10x-1|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.集合A={3,2a},B={a,b},若A∩B={2},则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.有如下几个结论:
①若函数y=f(x)满足:$f(x)=-\frac{1}{{f({x+1})}}$,则2为y=f(x)的一个周期,
②若函数y=f(x)满足:f(2x)=f(2x+1),则$\frac{1}{2}$为y=f(x)的一个周期,
③若函数y=f(x)满足:f(x+1)=f(1-x),则y=f(x+1)为偶函数,
④若函数y=f(x)满足:f(x+3)+f(1-x)=2,则(3,1)为函数y=f(x-1)的图象的对称中心.
正确的结论为①③(填上正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{xn}满足lgxn+1=1+lgxn(n∈N*),且x1+x2+x3+…+x100=100,则lg(x101+x102+…+x200)的值为(  )
A.102B.101C.100D.99

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(x)=xlnx,则f′(e)=(  )
A.0B.1C.2D.e

查看答案和解析>>

同步练习册答案