精英家教网 > 高中数学 > 题目详情

【题目】已知直线y=k(x﹣m)与抛物线y2=2px(p>0)交于A、B两点,O为坐标原点,OA⊥OB,OD⊥AB于D,点D在曲线x2+y2﹣4x=0上,则p=

【答案】4
【解析】 解:∵点D在直线AB:y=k(x﹣m)上,
∴设D坐标为(x,k(x﹣m)),
则OD的斜率为k′=
又∵OD⊥AB,AB的斜率为k,
∴kk′= =﹣1,即k(x﹣m)=﹣
又∵动点D的坐标满足x2+y2﹣4x=0,即x2+[k(x﹣m)]2﹣4x=0,
将k(x﹣m)=﹣ 代入上式,得x=
再把x代入到 =﹣1中,
化简得4k2﹣mk2+4﹣m=0,即(4﹣m)(k2+1)=0,
∵k2+1≠0,
∴4﹣m=0,
∴m=4.
所以答案是:4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为纪念重庆黑山谷晋升国家5A级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:

上市时间x天

1

2

6

市场价y元

5

2

10

(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;

(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知l1 , l2 , l3 , …ln为平面内相邻两直线距离为1的一组平行线,点O到l1的距离为2,A,B是l1的上的不同两点,点P1 , P2 , P3 , …Pn分别在直线l1 , l2 , l3 , …ln上.若 =xn +yn (n∈N*),则x1+x2+…+x5+y1+y2+…+y5的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,依次连接椭圆的四个顶点得到的菱形面积为4.

(1)求椭圆的方程;

(2)过点且斜率为的直线交椭圆 两点,设面积之比为(其中为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC 内部取n 个点, 将△ABC剖分为若干个小三角形(每两个小三角形或者有一个公共顶点,或者有一条公共边,或者完全没有公共点,如图所示).现将点A 染红色, 点B 染蓝色,点C 染黑色,其余n 个点的每个点也任意染上红、蓝、黑三色之一.我们称三个顶点的颜色恰为红、蓝、黑的小三角形为“特征三角形”.证明:至少有一个小三角形是特征三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x= 与直线x= 是函数 的图象的两条相邻的对称轴.
(1)求ω,φ的值;
(2)若 ,f(α)=﹣ ,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)上一点与它的左、右两个焦点F1 , F2的距离之和为2 ,且它的离心率与双曲线x2﹣y2=2的离心率互为倒数.
(1)求椭圆的方程;
(2)如图,点A为椭圆上一动点(非长轴端点),AF1的延长线与椭圆交于点B,AO的延长线与椭圆交于点C.
①当直线AB的斜率存在时,求证:直线AB与BC的斜率之积为定值;
②求△ABC面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,平面平面,四边形为平行四边形,且.

(1)求证:

(2)若,直线与平面所成角为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上点与两个定点 的距离之比等于5.

(1)求点的轨迹方程,并说明轨迹是什么图形;

2)记(1)中的轨迹为,过点的直线所截得的线段的长为 8,求直线的方程.

查看答案和解析>>

同步练习册答案