精英家教网 > 高中数学 > 题目详情

(12分)有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计)。有人应用数学知识作如下设计:在钢板的四个角处各切去一个全等的小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长。

(1)请你求出这种切割、焊接而成的长方体容器的最大容积

(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积

 

【答案】

(1)当时,取最大值 ;

(2)重新设计方案如下:

 

如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求.

【解析】本试题主要是考查了导数在研究函数中的运用。求解最值问题。

(1)因为设切去正方形边长为x,则焊接成的长方体的底面边长为,高为x

,然后求解导数来判定单调性得到极值,进而求解最值。

(2)在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求

(1)设切去正方形边长为x,则焊接成的长方体的底面边长为,高为x

                          ……(2分)

.                                ……(3分)

时,是关于x的增函数;

时,是关于x的减函数.

∴当时,取最大值                                       ……(7分)

(2)重新设计方案如下:

 

如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器.新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积为6,故第二种方案符合要求.……(12分)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2>V1

查看答案和解析>>

科目:高中数学 来源:2011届山西省介休市十中高三下学期模拟考试理科数学 题型:解答题

(本小题满分12分)
有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的最大容积V1;
(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积V2>V1.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山西省介休市高三下学期模拟考试理科数学 题型:解答题

(本小题满分12分)

有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长.

(1)请你求出这种切割、焊接而成的长方体容器的最大容积V1;

(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积V2>V1.

 

 

查看答案和解析>>

科目:高中数学 来源:2010年广东省高二上学期第一次段考理科数学卷 题型:解答题

(本题满分14分).有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个边长为的小正方形,剰余部分围成一个长方体,该长方体的高是小正方形的边长.

(1)请你求出这种切割、焊接而成的长方体容器的的容积V1(用表示);

(2)经过设计(1)的方法,计算得到当时,Vl取最大值,为了材料浪费最少,工人师傅还实践出了其它焊接方法,请写出与(1)的焊接方法更佳(使材料浪费最少,容积比Vl大)的设计方案,并计算利用你的设计方案所得到的容器的容积。

 

查看答案和解析>>

同步练习册答案