精英家教网 > 高中数学 > 题目详情
19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$({1,\frac{{\sqrt{2}}}{2}})$,其离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)若直线y=x+m与C相交于A,B两点,∠AOB(O为坐标原点)为钝角,求实数m的取值范围.

分析 (1)由题意列关于a,b,c的方程组,求解方程组可得a,b的值,则椭圆方程可求;
(2)联立直线方程和椭圆方程,化为关于x的一元二次方程,由判别式大于0求得m的范围,再由根与系数的关系结合$\overrightarrow{AO}•\overrightarrow{BO}<0$进一步求得m的范围得答案.

解答 解:(1)由题意,$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{1}{{a}^{2}}+\frac{1}{2{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{2}$,b=1,c=1.
∴椭圆C的方程为:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)联立$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得3x2+4mx+2m2-2=0.
由△=16m2-12(2m2-2)>0,得m2<3.
设A(x1,y1),B(x2,y2),
则${x}_{1}+{x}_{2}=-\frac{4m}{3},{x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{3}$,①
∵∠AOB为钝角,∴$\overrightarrow{AO}•\overrightarrow{BO}={x}_{1}{x}_{2}+{y}_{1}{y}_{2}<0$,
即$2{x}_{1}{x}_{2}+m({x}_{1}+{x}_{2})+{m}^{2}<0$,②
把①代入②得:$2×\frac{2{m}^{2}-2}{3}-\frac{4}{3}m×m+{m}^{2}<0$,
解得:$-\frac{2\sqrt{3}}{3}<m<\frac{2\sqrt{3}}{3}$.
∵A、B、O三点不共线,∴m≠0.
∴实数m的取值范围为($-\frac{2\sqrt{3}}{3},0$)∪(0,$\frac{2\sqrt{3}}{3}$).

点评 本题考查椭圆的简单性质,考查椭圆标准方程的求法,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>a>0})$的左焦点关于C的一条渐近线的对称点在另一条渐近线上,则C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-1|+|x-2|,记f(x)的最小值为k.
(1)解不等式:f(x)≤x+1;
(2)是否存在正数a、b,同时满足:2a+b=k,$\frac{1}{a}$+$\frac{2}{b}$=4?若存在,求出a、b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.点M(0,2)为圆C:(x-4)2+(y+1)2=25上一点,过M的圆的切线为l,且l与l′:4x-ay+2=0平行,则l与l′之间的距离是(  )
A.$\frac{8}{5}$B.$\frac{4}{5}$C.$\frac{28}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$tan({\frac{π}{2}-α})=2$,则$\frac{sinα-cosα}{2sinα+cosα}$=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中的内角A,B,C所对的边长分比为a,b,c,且a=5,cosB=$\frac{4}{5}$.
(Ⅰ)若b=4,求sinA的值;
(Ⅱ)若△ABC的面积为12,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC中,B(-4,0),C(4,0),|AB|+|AC|=10,则顶点A的轨迹方程是(  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±3)B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±5)
C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±3)D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.太原市某时段100辆汽车通过祥云桥时,时速的频率分布直方图如图所示,则时速在[30,40]的汽车约有(  )
A.30辆B.35辆C.40辆D.50辆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的三边长a,b,c和面积S满足S=$\frac{1}{2}$[c2-(a-b)2],若c=2,且2sinAcosC=sinB,则b的值为(  )
A.$\frac{15}{4}$B.$\frac{13}{4}$C.$\frac{12}{5}$D.$\frac{13}{5}$

查看答案和解析>>

同步练习册答案