精英家教网 > 高中数学 > 题目详情

【题目】已知为公差不为零的等差数列,首项的部分项、 、恰为等比数列,且.

1)求数列的通项公式(用表示);

2)设数列的前项和为, 求证: 是正整数

【答案】(12)见解析

【解析】试题分析:

1)由题得a1,a5,a17是成等比数列的,所以,则可以利用公差d和首项a来表示,进而得到d的值,得到an的通项公式.

2)利用第一问可以求的等比数列、 、中的前三项,得到该等比数列的通项公式,进而得到的通项公式,再利用分组求和法可得到Sn的表达式,可以发现为不可求和数列,所以需要把放缩成为可求和数列,考虑利用的二项式定理放缩证明,即,故求和即可证明原不等式.

试题解析:

1)设数列的公差为

由已知得成等比数列,

,且2

已知为公差不为零

3

. 4

2)由(1)知5

而等比数列的公比.

6

因此

7

9

时,

(或用数学归纳法证明此不等式)

11

时, ,不等式成立;

时,

综上得不等式 成立. 14

法二时,

(或用数学归纳法证明此不等式)

11

时, ,不等式成立;

时, ,不等式成立;

时,

综上得不等式 成立. 14

(法三) 利用二项式定理或数学归纳法可得:

所以, 时,

时, 综上得不等式 成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示单位:cm,四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为实数.

1若关于的不等式的解集为,求实数的值;

2)设时,求函数的最小值(用表示)

3若关于不等式的解集中恰好有两个整数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=.(a>0)

(1)若a=1,证明:y=f(x)在R上单调递减;

(2)当a>1时,讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点

1)求椭圆的方程;

2)求的最小值,并求此时圆的方程;

3)设点是椭圆上异于, 的任意一点,且直线分别与轴交于点为坐标原点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)求证: .

2)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

sin213°cos217°sin13°cos17°

sin215°cos215°sin15°cos15°

sin218°cos212°sin18°cos12°

sin2(18°)cos248°sin(18°)cos48°

sin2(25°)cos255°sin(25°)cos55°.

试从上述五个式子中选择一个,求出这个常数;

根据的计算结果,将该同学的发现推广为三角恒等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发了一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(小时)之间的关系近似满足如图所示的曲线.

(1)写出服药后之间的函数关系式;

(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病的有效时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是R上的偶函数,对xR都有f(x+4)=f(x)+f(2)成立.当x1,x2[0,2],且x1≠x2时,都有<0,给出下列命题:

f(2)=0;

直线x=-4是函数y=f(x)图象的一条对称轴;

函数y=f(x)在[-4,4]上有四个零点;

f(2 014)=0.

其中所有正确命题的序号为________.

查看答案和解析>>

同步练习册答案