精英家教网 > 高中数学 > 题目详情
11.函数y=loga(2x-3)+$\frac{\sqrt{2}}{2}$(a>0且a≠1)的图象恒过定点P,且P在幂函数f(x)的图象上,则f(4)=(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.16

分析 先求出函数恒过的定点,从而求出幂函数的解析式,从而求出f(4)的值即可.

解答 解:∵y=loga(2x-3)+$\frac{\sqrt{2}}{2}$,
∴其图象恒过定点P(2,$\frac{\sqrt{2}}{2}$),
设幂函数f(x)=xα
∵P在幂函数f(x)的图象上,
∴2α=$\frac{\sqrt{2}}{2}$,
∴α=-$\frac{1}{2}$.
∴f(x)=${x}^{-\frac{1}{2}}$.
∴f(4)=$\frac{1}{2}$.
故选:B.

点评 本题考查了对数函数、幂函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.命题“设 a、b、c∈R,若ac2>bc2 则 a>b”的原命题、逆命题、否命题中,真命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知某几何体的三视图(单位:cm)如图所示,则该几何体表面积是124+2$\sqrt{34}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算:
(1)${(\sqrt{2}-1)^0}+{(\frac{16}{9})^{-\frac{1}{2}}}+{(\sqrt{8})^{-\frac{4}{3}}}$;
(2)${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}+2lg(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
 ①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
 ③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
当f(x)=ex时,上述结论中正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=lgx+x有零点的区间是(  )
A.(1,2)B.($\frac{1}{10},1$)C.(2,3)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将一个各个面上均涂有颜色的正方体锯成n3(n≥3)个同样大小的小正方体,从这些小正方体中任取1个,则其中三面都涂有颜色的概率为(  )
A.$\frac{1}{n^3}$B.$\frac{4}{n^3}$C.$\frac{8}{n^3}$D.$\frac{1}{n^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知F1,F2分别是双曲线x2-$\frac{{y}^{2}}{2}$=1的左、右焦点,过F1倾斜角为60°的直线交双曲线于点M,N.求|MN|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-EFGH中,M,N,P,Q,R分别是EH,EF,BC,CD,AD的中点,求证:平面MNA∥平面PQG.

查看答案和解析>>

同步练习册答案