精英家教网 > 高中数学 > 题目详情
5.如图所示,已知⊙O的半径是1,点C在直径AB的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧.
(Ⅰ)若∠POB=θ,0<θ<π,试将四边形OPDC的面积y表示为关于θ的函数;
(Ⅱ)求四边形OPDC面积的最大值.

分析 (Ⅰ)若∠POB=θ,0<θ<π,由余弦定理将四边形OPDC的面积y表示为关于θ的函数;
(Ⅱ)当θ-$\frac{π}{3}$=$\frac{π}{2}$,即θ=$\frac{5π}{6}$时,可求四边形OPDC面积的最大值.

解答 解:(Ⅰ)在△POC中,由余弦定理,
得PC2=OP2+OC2-2OP•OC•cos θ=5-4cos θ,…(4分)
所以y=S△OPC+S△PCD
=$\frac{1}{2}$×1×2sin θ+$\frac{\sqrt{3}}{4}$×(5-4cos θ)=2sin(θ-$\frac{π}{3}$)+$\frac{5\sqrt{3}}{4}$.…(8分)
(Ⅱ)当θ-$\frac{π}{3}$=$\frac{π}{2}$,即θ=$\frac{5π}{6}$时,ymax=2+$\frac{5\sqrt{3}}{4}$.
答:四边形OPDC面积的最大值为2+$\frac{5\sqrt{3}}{4}$.…(12分)

点评 本题考查余弦定理,考查三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.从已有3个红球、2个白球的袋中任取3个球,设A={至少取到两个红球},B={恰好取到一个白球},则事件AB的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是(  )
A.至少有1件次品与至多有1件正品B.恰有1件次品与恰有2件正品
C.至少有1件次品与至少有1件正品D.至少有1件次品与都是正品

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2x3-3(a+1)x2+bx.
(1)若曲线y=f(x)在点(2,f(2))处的切线方程为y=6x-8,求实数a、b的值;
(2)若b=6a,a>1,求f(x)在闭区间[0,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若A,B,C不共线,对于空间任意一点O都有$\overrightarrow{OP}$=$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{1}{8}$$\overrightarrow{OB}$+$\frac{1}{8}$$\overrightarrow{OC}$,则P,A,B,C四点(  )
A.不共面B.共面C.共线D.不共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.$\frac{25π}{4}$B.$\frac{25π}{8}$C.12πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$f(x)=\left\{{\begin{array}{l}{lnx,x>0}\\{-x({x+2}),x≤0}\end{array}}\right.$的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.向量$\vec a=({-1,1})$,$\vec b=({1,0})$,若$({\vec a-\vec b})⊥({2\vec a+λ\vec b})$,则λ=(  )
A.2B.-2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.读程序(如图)

(Ⅰ)画出程序框图;
(Ⅱ)当输出的y的范围大于1时,求输入的x值的取值范围.

查看答案和解析>>

同步练习册答案