分析 (1)由条件利用正弦函数的单调性,求得函数f(x)的单调增区间.
(2)由条件利用诱导公式,求得cos(x+$\frac{π}{3}$)的值.
解答 解:(1)对于函数f(x)=2sin(x-$\frac{π}{6}$),令 2kπ-$\frac{π}{2}$≤x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得2kπ-$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,
故函数的增区间为[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$],k∈Z.
(2)若f(x)=2sin(x-$\frac{π}{6}$)=$\frac{6}{5}$,∴sin(x-$\frac{π}{6}$)=$\frac{3}{5}$=-cos($\frac{π}{2}$+x-$\frac{π}{6}$)=-cos(x+$\frac{π}{3}$),
∴cos(x+$\frac{π}{3}$)=-$\frac{3}{5}$.
点评 本题主要考查正弦函数的单调性,诱导公式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [1,3) | B. | (-1,3) | C. | (-1,0)∪[1,3) | D. | (-1,1)∪(1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{2}-\frac{1}{2}i$ | B. | $\frac{{\sqrt{3}}}{2}+\frac{1}{2}i$ | C. | $\sqrt{3}-i$ | D. | $\sqrt{3}+i$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com