精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3-3ax+b(a≠0).
(1)若曲线y=f(x)在点(1,f(1))处与直线y=2相切,求a、b的值;
(2)求f(x)的单调区间.
分析:(1)求出f(x)的导函数,由曲线y=f(x)在点(1,f(1))处与直线y=2相切,把x=1代入导函数得到导函数值为0,把x=1代入f(x)中得到函数值为2,列出关于a与b的方程组,求出方程组的解即可得到a和b的值;
(2)把导函数分解因式,分a大于0和a小于0两种情况讨论导函数的正负,即可得到函数的单调区间.
解答:解:(1)f'(x)=3x2-3a,(2分)
∵曲线在点(1,f(1))处与直线y=2相切,
f′(1)=0
f(1)=2
3-3a=0
1-3a+b=2
,(4分)
解得
a=1
b=4
.(5分)
(2)∵f'(x)=3x2-3a=3(x2-a)(a≠0)(7分)
(i)当a<0时,f'(x)>0恒成立,f(x)在(-∞,+∞)上单调递增;(9分)
(ii)当a>0时,由f'(x)>0,得x>
a
x<-
a
,(10分)
∴函数f(x)的单调增区间为(-∞,-
a
)和(
a
,+∞);单调减区间为(-
a
a
).(12分)
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,会根据导函数的正负判断函数的得到区间,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案