精英家教网 > 高中数学 > 题目详情
把正整数排列成三角形数阵(如图甲),然后擦去第偶数行中的奇数和第奇数行中的偶数,得到新的三角形数阵(如图乙),再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},则a2010=
3957
3957

分析:观察乙图,发现第k行有k个数,第k行最后的一个数为k2,前k行共有
k(k+1)
2
个数,然后以判断出这个2010个数在第63行,第57个数,求出第63行第一个数,而第63行相邻两个数相差2,得到第63行57个数值,即可求出所求.
解答:解:图乙中第k行有k个数,第k行最后的一个数为k2,前k行共有
k(k+1)
2
个数,
前62行有1953个数,由2010个数出现在第63行,第57个数,
第62行第一个数为622+1=3845,公差为2的等差数列
∴a2010=3845+(57-1)×2=3957,
故答案为:3957
点评:本题主要考查学生会根据图形归纳总结规律来解决问题,会进行数列的递推式运算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把正整数排列成三角形数阵(如图甲),如果擦去第偶数行中的奇数和第奇数行中的偶数,得到新的三角形数阵(如图乙),再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},则a2011=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

把正整数排列成三角形数阵(如图甲),然后擦去第偶数行中的奇数和第奇数行中的偶数,得到新的三角形数阵(如图乙),再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},则a100=
186
186

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•成都一模)把正整数排列成三角形数阵(如图甲),然后擦去第偶数行中的奇数和第奇数行中的偶数,得到新的三角形数阵(如图乙),再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},则a2010=(  )

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市十校高三(上)第一次联考数学试卷(文科)(解析版) 题型:填空题

把正整数排列成三角形数阵(如图甲),然后擦去第偶数行中的奇数和第奇数行中的偶数,得到新的三角形数阵(如图乙),再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},则a100=   

查看答案和解析>>

同步练习册答案