精英家教网 > 高中数学 > 题目详情
下列说法正确的是(  )
A、若p且q为假命题,则p,q均为假命题
B、“x>2”是“x2-3x+2>0”的必要不充分条件
C、若m<1,则方程x2-2x+m=0无实数根
D、命题“若x=y,则sinx=siny”的逆否命题为真命题
考点:命题的真假判断与应用,四种命题间的逆否关系,必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:A.由p且q为假命题,则p,q中至少有一个为假命题,即可判断出;
B.由x2-3x+2>0解得x>2或x<1,即可判断出;
C.当m<1,方程x2-2x+m=0的△=4-4m>0,判断出方程有实数根;
D.由命题“若x=y,则sinx=siny”是真命题,即可判断出其逆否命题的真假.
解答: 解:A.若p且q为假命题,则p,q中至少有一个为假命题,因此A是假命题;
B.由x2-3x+2>0解得x>2或x<1,因此x>2”是“x2-3x+2>0”的充分不必要条件,因此B不正确;
C.当m<1,方程x2-2x+m=0的△=4-4m>0,∴方程有实数根,因此C不正确;
D.命题“若x=y,则sinx=siny”是真命题,因此其逆否命题为真命题,故正确.
故选:D.
点评:本题考查了简易逻辑的有关知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3+a+b在区间[-2,a]上是奇函数,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、“a>b”是“a2>b2”的必要条件
B、自然数的平方大于0
C、存在一个钝角三角形,它的三边长均为整数
D、“若a,b都是偶数,则a+b是偶数”的否命题为真

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x-y≤0
x+y≤1
2x+y≥1
,则目标函数z=x+5y的最大值为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面α、β,直线a、b,a?α,b?α,则“a∥β,b∥β”是“α∥β”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为(  )
A、y=0.8x+3
B、y=-1.2x+7.5
C、y=1.6x+0.5
D、y=1.3x+1.2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥1
y≥1
x+y≤5
时,z=
x
a
+
y
b
 
(a≥b>0)的最大值为1,则a+b的最小值为(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,满足:a2+a4=18,S7=91.递增的等比数列{bn}前n项和为Tn,满足:b1+bk=66,b2bk-1=128,Tk=126.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{cn}对?n∈N*,均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1
成立,求c1+c2+…+c2013

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x2-kx-8在区间[5,10]上具有单调性,则实数k的取值范围是
 

查看答案和解析>>

同步练习册答案