精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,四边形ABCD为正方形,PD平面ABCD,PD=AD=2。

(1)求PC与平面PBD所成的角;
(2)在线段PB上是否存在一点E,使得平面ADE?并说明理由。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
如图,在三棱中,已知侧面
(1)求直线C1B与底面ABC所成角的正弦值;

(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).
(3)在(2)的条件下,若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将两块三角板按图甲方式拼好,其中,AC = 2,现将三角板ACD沿AC折起,使D在平面ABC上的射影O恰好在AB上,如图乙.

(I)求证:BC ⊥AD;
(II)求证:O为线段AB中点;
(III)求二面角D-AC-B的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知的三个顶点均在球O的球面上,且AB=AC=1,,直线OA与平面ABC所成的角的正弦值为,则球面上B、C两点间的球面距离为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(8分)
如图,在四面体中,,点分别是的中点.求证:
(1)直线
(2)平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F、G分别为EB和AB的中点.

(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3) 求二面角B—FC—G的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(8分)
已知四边形是空间四边形,分别是边的中点,求证:四边形是平行四边形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是平面的法向量,则平面的位置关系是(   )
A.平行B.垂直C.相交但不垂直D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)(本小题8分)
如图,在四棱锥中,平面
(1)求证:
(2)求点到平面的距离
证明:(1)平面

平面 (4分)
(2)设点到平面的距离为

求得即点到平面的距离为              (8分)
(其它方法可参照上述评分标准给分)

查看答案和解析>>

同步练习册答案